Multicomponent metal sulfides have been recognized as promising anode materials for lithium/sodiumion storage given their enticing theoretical capacities. However, the simplification of synthetic processes and the con...Multicomponent metal sulfides have been recognized as promising anode materials for lithium/sodiumion storage given their enticing theoretical capacities. However, the simplification of synthetic processes and the construction of heterogeneous interfaces of multimetal sulfides remain great challenges. Herein,a hierarchical 1T-MoS2/carbon nanosheet decorated Co1–xS/N-doped carbon(Co1–xS/NC@MoS2/C) hollow nanofiber was designed and constructed via a one-pot hydrothermal method using a cobalt-based coordination polymer nanofiber. This nanofiber can transform in-situ into conductive N-doped carbon hollow fibers embedded with active Co1–xS nanoparticles, enabling the epitaxial growth of MoS2 nanosheets.Consequently, the Co1–xS/NC@MoS2/C composites achieve exceptional lithium/sodium-ion storage performance. Compared to MoS2/C microspheres and Co1–xS/NC hollow nanofibers alone, the Co1–xS/NC@MoS2/C hollow nanofibers deliver higher discharge capacities(1085.9 mAh g^-1 for lithium-ion batteries(LIBs) and 748.5 mAh g^-1 for sodium-ion batteries(SIBs) at 100 mA g^-1), better capacity retention(910 mAh g^-1 for LIBs and 636.5 mAh g^-1 for SIBs after 150 cycles at 100 mA g^-1), and increased cycling stability(407.2 mAh g^-1 after 1000 cycles for SIBs at 1000 m A g^-1). Furthermore, the kinetic analysis shows that the lithium/sodium-ion storage processes of the Co1–xS/NC@MoS2/C electrode are mainly controlled by pseudocapacitance behavior. The excellent electrochemical properties can thus be ascribed to the synergy of the MoS2/C nanosheets with the enlarged interlayer spacing, good conductivity of the carbon layers, and the Co1–xS nanoparticles embedded in the hollow nanofibers with extensive reaction sites.展开更多
基金supported by the Science and Technology Innovation Commission of Shenzhen,China (JCYJ20190808114803804, 20200812104042001)the Research Grant Council (RGC) of the Hong Kong Special Administrative Region,China (T23-601/17-R)
基金This work was supported by the National Natural Science Foundation of China(51673117,21805193 and 51973118)Postdoctoral Science Foundation of China(2019M650212)+2 种基金Key R&D Program of Guangdong Province(2019B010929002 and 2019B010941001)Science and Technology Innovation Commission of Shenzhen(JCYJ20170817094628397,JCYJ20170818093832350,JCYJ20170818112409808,JCYJ20170818100112531,JCYJ20180507184711069,and JCYJ20180305125319991)The authors also thank the Materials and Devices Testing Center of Tsinghua University Shenzhen Graduate School.
文摘Multicomponent metal sulfides have been recognized as promising anode materials for lithium/sodiumion storage given their enticing theoretical capacities. However, the simplification of synthetic processes and the construction of heterogeneous interfaces of multimetal sulfides remain great challenges. Herein,a hierarchical 1T-MoS2/carbon nanosheet decorated Co1–xS/N-doped carbon(Co1–xS/NC@MoS2/C) hollow nanofiber was designed and constructed via a one-pot hydrothermal method using a cobalt-based coordination polymer nanofiber. This nanofiber can transform in-situ into conductive N-doped carbon hollow fibers embedded with active Co1–xS nanoparticles, enabling the epitaxial growth of MoS2 nanosheets.Consequently, the Co1–xS/NC@MoS2/C composites achieve exceptional lithium/sodium-ion storage performance. Compared to MoS2/C microspheres and Co1–xS/NC hollow nanofibers alone, the Co1–xS/NC@MoS2/C hollow nanofibers deliver higher discharge capacities(1085.9 mAh g^-1 for lithium-ion batteries(LIBs) and 748.5 mAh g^-1 for sodium-ion batteries(SIBs) at 100 mA g^-1), better capacity retention(910 mAh g^-1 for LIBs and 636.5 mAh g^-1 for SIBs after 150 cycles at 100 mA g^-1), and increased cycling stability(407.2 mAh g^-1 after 1000 cycles for SIBs at 1000 m A g^-1). Furthermore, the kinetic analysis shows that the lithium/sodium-ion storage processes of the Co1–xS/NC@MoS2/C electrode are mainly controlled by pseudocapacitance behavior. The excellent electrochemical properties can thus be ascribed to the synergy of the MoS2/C nanosheets with the enlarged interlayer spacing, good conductivity of the carbon layers, and the Co1–xS nanoparticles embedded in the hollow nanofibers with extensive reaction sites.