The classical method within the independent electron model is employed to investigate (i) charge dependences of single and double ionization for helium by various charged ions A^q+ (q = 1 - 8) at impact energies ...The classical method within the independent electron model is employed to investigate (i) charge dependences of single and double ionization for helium by various charged ions A^q+ (q = 1 - 8) at impact energies of 0.64 and 1.44 MeV/u, respectively, (ii) energy dependences of transfer ionization for helium by 0.5-3 MeV/u A^8.9+ ions impact. The Lenz-Jensen model of the atom is applied instead of the Bohr model of the atom, and the impact-parameter dependences are also introduced into the calculations. Satisfactory agreement is found between theoretical and experimental data.展开更多
Cross-section ratios σTI/σSC of transfer ionization (TI) to single capture (SC) of C^q+- and O^q+-He (q = 1 - 3) collisions in the energy range of 15-440 keV/u (0.8-4.2 vBohr) are experimentally determined...Cross-section ratios σTI/σSC of transfer ionization (TI) to single capture (SC) of C^q+- and O^q+-He (q = 1 - 3) collisions in the energy range of 15-440 keV/u (0.8-4.2 vBohr) are experimentally determined. It is shown that σTI/σSC strongly depends on the projectile velocity, and there is a maximum for E(keV/u)/q1/2 ≈, 150. Combining the Bohr-Lindhard model and the statistical model, a theoretical estimate is presented, in reasonable agreement with the experimental data when E(keV//u)/q^1/2 〉 35.展开更多
A simple model for the direct ionization and transfer ionization probabilities in A^2++He collisions in a wide projectile energy range is proposed based on the Bohr-Lindhard model and the classical statistical model...A simple model for the direct ionization and transfer ionization probabilities in A^2++He collisions in a wide projectile energy range is proposed based on the Bohr-Lindhard model and the classical statistical model. The calculated cross sections are in satisfactory agreement with the experimental data available.展开更多
The ratios of transfer ionization (TI) to single-electron capture (SC) cross sections have been measured for the collisions of partially stripped C^q+ ions (q = 1-4) with He. The collision velocity ranges from ...The ratios of transfer ionization (TI) to single-electron capture (SC) cross sections have been measured for the collisions of partially stripped C^q+ ions (q = 1-4) with He. The collision velocity ranges from 0.7 to 4.4 vo (vo is the Bohr velocity). The projectile-ion and recoil-ion coincidence technique is used to separate the processes of TI and SC. The ratios reach the maximum when the velocity is about 3.7 vo. This can be explained qualitatively based on the two-step mechanism. The experimental results are also compared with the results calculated using the classical trajectory Monte Carlo (CTMC) method. The CTMC results are in agreement with the experimental data basically. The discrepancies in higher velocity region are interpreted by the effective charge effect.展开更多
This paper reports that the ratios of double to single electron loss cross-section (R) of O^2+ in collision with Ar and He at the velocity of 1 -4 vo(vo is the Bohr velocity) have been obtained by the coincidence...This paper reports that the ratios of double to single electron loss cross-section (R) of O^2+ in collision with Ar and He at the velocity of 1 -4 vo(vo is the Bohr velocity) have been obtained by the coincidence technique. The trend of R - V in the experiment indicates that the effective charge varies with injected velocity. The effective charge can be obtained by the n-body classical trajectory Monte Carlo method, which is interpreted by the molecular Coulomb over barrier model.展开更多
Target ionization accompanied with projectile electron loss is investigated for 0.2-7 MeV C^q+ (q = 1 - 4) with He and 0.25-5 MeV O^q+ (q = 1 - 4) with He collisions. For projectile single-electron loss channel,...Target ionization accompanied with projectile electron loss is investigated for 0.2-7 MeV C^q+ (q = 1 - 4) with He and 0.25-5 MeV O^q+ (q = 1 - 4) with He collisions. For projectile single-electron loss channel, the He double-to-single ionization ratio R is nearly independent of projectile charge state but dependent on the nuclear charge of projectile Zp. The results are analysed with atomic structure qualitatively. So far there have not existed the experimental data comparable with our results, to our knowledge. The ratio R is interpreted in terms of the two-step mechanism. This analysis agrees well with similar experiments in the literature.展开更多
The multi-electron processes are investigated for 17.9-120 keV/u C^1+, 30-323 keV/u C^2+, 120-438 keV/u ^C3+, 287-480 keV/u C^4+ incident on a helium target. The cross-section ratios of double electron (DE) proc...The multi-electron processes are investigated for 17.9-120 keV/u C^1+, 30-323 keV/u C^2+, 120-438 keV/u ^C3+, 287-480 keV/u C^4+ incident on a helium target. The cross-section ratios of double electron (DE) process to the total of the single electron (SE) and the double electron process (i.e. SE+DE), the direct double electron (DDI) to the direct single ionization (DSI) as well as the contributions of DDI to DE and of TI to DE are measured using coincidence techniques. The energy and charge state dependences of the measured cross-section ratios are studied and discussed.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 10704030, and the Natural Science Foundation of Gansu Province under Grant No 0710RJZA014.
文摘The classical method within the independent electron model is employed to investigate (i) charge dependences of single and double ionization for helium by various charged ions A^q+ (q = 1 - 8) at impact energies of 0.64 and 1.44 MeV/u, respectively, (ii) energy dependences of transfer ionization for helium by 0.5-3 MeV/u A^8.9+ ions impact. The Lenz-Jensen model of the atom is applied instead of the Bohr model of the atom, and the impact-parameter dependences are also introduced into the calculations. Satisfactory agreement is found between theoretical and experimental data.
基金Supported by the National Natural Science Foundation of China with Grant Nos 10704030 and 10304019, and the Natural Science Foundation of Gansu Province under Grant No 0710RJZA014.
文摘Cross-section ratios σTI/σSC of transfer ionization (TI) to single capture (SC) of C^q+- and O^q+-He (q = 1 - 3) collisions in the energy range of 15-440 keV/u (0.8-4.2 vBohr) are experimentally determined. It is shown that σTI/σSC strongly depends on the projectile velocity, and there is a maximum for E(keV/u)/q1/2 ≈, 150. Combining the Bohr-Lindhard model and the statistical model, a theoretical estimate is presented, in reasonable agreement with the experimental data when E(keV//u)/q^1/2 〉 35.
基金Supported by the National Natural Science Foundation of China with Grant No 10704030.
文摘A simple model for the direct ionization and transfer ionization probabilities in A^2++He collisions in a wide projectile energy range is proposed based on the Bohr-Lindhard model and the classical statistical model. The calculated cross sections are in satisfactory agreement with the experimental data available.
文摘The ratios of transfer ionization (TI) to single-electron capture (SC) cross sections have been measured for the collisions of partially stripped C^q+ ions (q = 1-4) with He. The collision velocity ranges from 0.7 to 4.4 vo (vo is the Bohr velocity). The projectile-ion and recoil-ion coincidence technique is used to separate the processes of TI and SC. The ratios reach the maximum when the velocity is about 3.7 vo. This can be explained qualitatively based on the two-step mechanism. The experimental results are also compared with the results calculated using the classical trajectory Monte Carlo (CTMC) method. The CTMC results are in agreement with the experimental data basically. The discrepancies in higher velocity region are interpreted by the effective charge effect.
基金supported by the Special Foundation for State Major Basic Research Program of China (Grant No 2002CCA00900)
文摘This paper reports that the ratios of double to single electron loss cross-section (R) of O^2+ in collision with Ar and He at the velocity of 1 -4 vo(vo is the Bohr velocity) have been obtained by the coincidence technique. The trend of R - V in the experiment indicates that the effective charge varies with injected velocity. The effective charge can be obtained by the n-body classical trajectory Monte Carlo method, which is interpreted by the molecular Coulomb over barrier model.
文摘Target ionization accompanied with projectile electron loss is investigated for 0.2-7 MeV C^q+ (q = 1 - 4) with He and 0.25-5 MeV O^q+ (q = 1 - 4) with He collisions. For projectile single-electron loss channel, the He double-to-single ionization ratio R is nearly independent of projectile charge state but dependent on the nuclear charge of projectile Zp. The results are analysed with atomic structure qualitatively. So far there have not existed the experimental data comparable with our results, to our knowledge. The ratio R is interpreted in terms of the two-step mechanism. This analysis agrees well with similar experiments in the literature.
基金Supported by the National Natural Science Foundation of China with Grant No 10304019.
文摘The multi-electron processes are investigated for 17.9-120 keV/u C^1+, 30-323 keV/u C^2+, 120-438 keV/u ^C3+, 287-480 keV/u C^4+ incident on a helium target. The cross-section ratios of double electron (DE) process to the total of the single electron (SE) and the double electron process (i.e. SE+DE), the direct double electron (DDI) to the direct single ionization (DSI) as well as the contributions of DDI to DE and of TI to DE are measured using coincidence techniques. The energy and charge state dependences of the measured cross-section ratios are studied and discussed.