期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
高斯变异粒子群优化径向基神经网络铣削力预测
1
作者 匡佳维 周细枝 +2 位作者 付渝彬 余中全 黎仕 《机床与液压》 2024年第21期149-154,共6页
针对传统电流-切削力神经网络预测模型精度不高且神经网络参数难以确定的问题,将主轴电流与驱动轴电流同时考虑作为输入样本,提出帐篷映射下高斯变异粒子群优化径向基神经网络算法。算法在改进收缩粒子群径向基神经网络(改进CFA PSO-RBF... 针对传统电流-切削力神经网络预测模型精度不高且神经网络参数难以确定的问题,将主轴电流与驱动轴电流同时考虑作为输入样本,提出帐篷映射下高斯变异粒子群优化径向基神经网络算法。算法在改进收缩粒子群径向基神经网络(改进CFA PSO-RBF)的基础上,对粒子位置初始化采用帐篷映射(Tent Map),同时提出粒子动态高斯变异。该算法能够均匀化粒子初始位置,控制变异过程,并有效避免算法陷入局部最优的早熟问题。基于此方法进行算法对比分析实验,结果表明:同时考虑主轴与驱动轴电流,较单一考虑主轴电流,铣削力预测精度更高;在该算法下,随机15次训练结果平均均方根误差低于BP、RBF、改进CFA PSO-RBF神经网络,能够有效提高铣削力预测精度。 展开更多
关键词 切削力预测 RBF神经网络 CFA PSO算法 Tent映射 高斯变异
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部