The development of cost-effective and highperformance electrocatalysts has been increasingly studied to mitigate upcoming energy and environmental challenges.Amorphization and heterointerface engineering have played s...The development of cost-effective and highperformance electrocatalysts has been increasingly studied to mitigate upcoming energy and environmental challenges.Amorphization and heterointerface engineering have played significant roles in the rational design of electrocatalysts and modulation of their electrocatalytic activities.However,the synergistic effect between amorphization and heterointerfaces has been scarcely reported.As a proof-of-concept attempt,we develop amorphous FeMo(a-FeMo)electrocatalysts with an abundance of heterointerfaces that are composed of amorphous components and evaluate their electrocatalytic performances toward the nitrogen reduction reaction and oxygen evolution reaction(OER).Benefitting from the synergistic effect between the amorphous nature of the a-FeMo electrocatalysts,which offer a high density of active sites,and significant electron redistribution at the heterointerfaces,the electrocatalysts exhibit a high Faradaic efficiency of 29.15%,an elevated yield rate of 71.78μg_(NH_(3)) mg_(cat.)^(-1) h^(-1) with long-term stability at a potential of-0.1V vs.reversible hydrogen electrode and excellent electrocatalytic activity toward the OER.This study provides a promising and effective method for the rational design of low-cost heterogeneous catalysts with desirable efficiency,selectivity,and stability.展开更多
基金supported by the National Natural Science Foundation of China(U2032149)Shenzhen Science and Technology Project(JCYJ20180507182246321)+3 种基金Hunan Provincial Natural Science Foundation of China(2020JJ2001)Hefei National Laboratory for Physical Sciences at the Microscale(KF2020108)the Fundamental Research Funds for the Central UniversitiesChina Postdoctoral Science Foundation(2019M663058 and 2019M652749).
文摘The development of cost-effective and highperformance electrocatalysts has been increasingly studied to mitigate upcoming energy and environmental challenges.Amorphization and heterointerface engineering have played significant roles in the rational design of electrocatalysts and modulation of their electrocatalytic activities.However,the synergistic effect between amorphization and heterointerfaces has been scarcely reported.As a proof-of-concept attempt,we develop amorphous FeMo(a-FeMo)electrocatalysts with an abundance of heterointerfaces that are composed of amorphous components and evaluate their electrocatalytic performances toward the nitrogen reduction reaction and oxygen evolution reaction(OER).Benefitting from the synergistic effect between the amorphous nature of the a-FeMo electrocatalysts,which offer a high density of active sites,and significant electron redistribution at the heterointerfaces,the electrocatalysts exhibit a high Faradaic efficiency of 29.15%,an elevated yield rate of 71.78μg_(NH_(3)) mg_(cat.)^(-1) h^(-1) with long-term stability at a potential of-0.1V vs.reversible hydrogen electrode and excellent electrocatalytic activity toward the OER.This study provides a promising and effective method for the rational design of low-cost heterogeneous catalysts with desirable efficiency,selectivity,and stability.