期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于生成对抗网络的图像风格迁移
1
作者
刘航
李明
+2 位作者
李莉
付登豪
徐昌莉
《南京信息工程大学学报(自然科学版)》
CAS
北大核心
2023年第5期514-523,共10页
生成对抗网络(Generative Adversarial Network,GAN)可以生成和真实图像较接近的生成图像.作为深度学习中较新的一种图像生成模型,GAN在图像风格迁移中发挥着重要作用.针对当前生成对抗网络模型中存在的生成图像质量较低、模型较难训练...
生成对抗网络(Generative Adversarial Network,GAN)可以生成和真实图像较接近的生成图像.作为深度学习中较新的一种图像生成模型,GAN在图像风格迁移中发挥着重要作用.针对当前生成对抗网络模型中存在的生成图像质量较低、模型较难训练等问题,提出了新的风格迁移方法,有效改进了BicycleGAN模型实现图像风格迁移.为了解决GAN在训练中容易出现的退化现象,将残差模块引入GAN的生成器,并引入自注意力机制,获得更多的图像特征,提高生成器的生成质量.为了解决GAN在训练过程中的梯度爆炸现象,在判别器每一个卷积层后面加入谱归一化.为了解决训练不够稳定、生成图像质量低的现象,引入感知损失.在Facades和AerialPhoto&Map数据集上的实验结果表明,该方法的生成图像的PSNR值和SSIM值高于同类比较方法.
展开更多
关键词
生成对抗网络
风格迁移
自注意力机制
谱归一化
感知损失
下载PDF
职称材料
题名
基于生成对抗网络的图像风格迁移
1
作者
刘航
李明
李莉
付登豪
徐昌莉
机构
重庆师范大学计算机与信息科学学院
西南大学计算机与信息科学学院
电子科技大学经济与管理学院
出处
《南京信息工程大学学报(自然科学版)》
CAS
北大核心
2023年第5期514-523,共10页
基金
国家自然科学基金(61877051,61170192)
重庆市科委重点项目(cstc2017zdcy-zdyf0366)
+1 种基金
重庆市教委项目(113143)
重庆市研究生教改重点项目(yjg182022)。
文摘
生成对抗网络(Generative Adversarial Network,GAN)可以生成和真实图像较接近的生成图像.作为深度学习中较新的一种图像生成模型,GAN在图像风格迁移中发挥着重要作用.针对当前生成对抗网络模型中存在的生成图像质量较低、模型较难训练等问题,提出了新的风格迁移方法,有效改进了BicycleGAN模型实现图像风格迁移.为了解决GAN在训练中容易出现的退化现象,将残差模块引入GAN的生成器,并引入自注意力机制,获得更多的图像特征,提高生成器的生成质量.为了解决GAN在训练过程中的梯度爆炸现象,在判别器每一个卷积层后面加入谱归一化.为了解决训练不够稳定、生成图像质量低的现象,引入感知损失.在Facades和AerialPhoto&Map数据集上的实验结果表明,该方法的生成图像的PSNR值和SSIM值高于同类比较方法.
关键词
生成对抗网络
风格迁移
自注意力机制
谱归一化
感知损失
Keywords
generative adversarial network(GAN)
style transfer
self-attention mechanism
spectral normalization
perceptual loss
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于生成对抗网络的图像风格迁移
刘航
李明
李莉
付登豪
徐昌莉
《南京信息工程大学学报(自然科学版)》
CAS
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部