Metal halide perovskites have been regarded as remarkable materials for next-generation light-harvesting and light emission devices.Due to their unique optical properties,such as high absorption coefficient,high optic...Metal halide perovskites have been regarded as remarkable materials for next-generation light-harvesting and light emission devices.Due to their unique optical properties,such as high absorption coefficient,high optical gain,low trappingstate density,and ease of band gap engineering,perovskites promise to be used in lasing devices.In this article,the recent progresses of microlasers based on reduced-dimensional structures including nanoplatelets,nanowires,and quantum dots are reviewed from both fundamental photophysics and device applications.Furthermore,perovskite-based plasmonic nanolasers and polariton lasers are summarized.Perspectives on perovskite-based small lasers are also discussed.This review can serve as an overview and evaluation of state-of-the-art micro/nanolaser science.展开更多
The Kondo effect in two-dimensionai manganese phthalocyanine (MnPc) self-assembled monolayer films on P5(111) islands is studied by low-temperature scanning tunneling microscopy. Variation of the Kondo temperature...The Kondo effect in two-dimensionai manganese phthalocyanine (MnPc) self-assembled monolayer films on P5(111) islands is studied by low-temperature scanning tunneling microscopy. Variation of the Kondo temperature from 50 K to 300 K at different molecule adsorption sites is revealed. It is shown that the variation is mainly due to the change in the width of d orbital, rather than the shift of its energy. The two-dimensional dI/dV mapping reveals the periodic modulation of the Kondo resonance in the self-assembled MnPc monolayer.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0304600,2017YFA0205700,and2016YFA0200700)the National Natural Science Foundation of China(Grant Nos.61774003 and 21673054)+2 种基金the Start-up Funding of Peking University,National Young 1000-talents Scholarship of Chinathe Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics,China(Grant No.KF201604)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDB-SSW-SYS031)
文摘Metal halide perovskites have been regarded as remarkable materials for next-generation light-harvesting and light emission devices.Due to their unique optical properties,such as high absorption coefficient,high optical gain,low trappingstate density,and ease of band gap engineering,perovskites promise to be used in lasing devices.In this article,the recent progresses of microlasers based on reduced-dimensional structures including nanoplatelets,nanowires,and quantum dots are reviewed from both fundamental photophysics and device applications.Furthermore,perovskite-based plasmonic nanolasers and polariton lasers are summarized.Perspectives on perovskite-based small lasers are also discussed.This review can serve as an overview and evaluation of state-of-the-art micro/nanolaser science.
基金Supported by the National Natural Science Foundation of China under Grant Nos 20733008 and 10904168, and the National Basic Research Program of China under Grant No 2009CB929404.
文摘The Kondo effect in two-dimensionai manganese phthalocyanine (MnPc) self-assembled monolayer films on P5(111) islands is studied by low-temperature scanning tunneling microscopy. Variation of the Kondo temperature from 50 K to 300 K at different molecule adsorption sites is revealed. It is shown that the variation is mainly due to the change in the width of d orbital, rather than the shift of its energy. The two-dimensional dI/dV mapping reveals the periodic modulation of the Kondo resonance in the self-assembled MnPc monolayer.