为了减少文本情感分析方法中对分词准确性的依赖程度,同时,也为了解决一词多义的问题,提出了一种基于BERT和双向长短时记忆网络(BiLSTM)的文本情感分类模型.首先,该模型采用BERT(Bidirectional Encode,Representation from Transformers...为了减少文本情感分析方法中对分词准确性的依赖程度,同时,也为了解决一词多义的问题,提出了一种基于BERT和双向长短时记忆网络(BiLSTM)的文本情感分类模型.首先,该模型采用BERT(Bidirectional Encode,Representation from Transformers,BERT)预训练的字向量替代传统方式训练的词向量,然后利用BiLSTM对文本上下文进行关系特征提取,最后再利用Softmax分类器获得文本所属情感类别.实验证明,与LSTM、BiLSTM、TextCNN和BERT-LSTM模型相比,该模型在综合评价指标F1上分别提高了6.78%、6.74%、2.52%和1.01%;测试集正确率分别提升了6.66%、6.31%、1.95%和0.85%.展开更多
针对眼底视网膜血管图像特征信息复杂,现有的血管分割算法对细小血管特征难以采集和血管误分割等问题,提出一种融合U-Net网络和密集网络的分割方法.首先,提取眼底图像的绿通道,通过限制对比度自适应直方图均衡化对图像进行血管增强处理...针对眼底视网膜血管图像特征信息复杂,现有的血管分割算法对细小血管特征难以采集和血管误分割等问题,提出一种融合U-Net网络和密集网络的分割方法.首先,提取眼底图像的绿通道,通过限制对比度自适应直方图均衡化对图像进行血管增强处理,其次,利用局部自适应Gamma校正来调整眼底图像的亮度信息,同时在卷积层之间引入一种动态激活函数,提高网络的特征表达能力,最后输入到改进网络模型中进行分割.该算法在DRIVE(digital retinal images for vessel extraction)和STARE(structured analysis of the retina)两个公开数据集上的准确率分别为96.28%和96.85%,特异性分别为98.46%和98.55%,灵敏度分别为80.47%和81.38%.实验表明所提方法能够准确识别并分割出眼底细微血管,提高了视网膜血管分割的准确率.展开更多
文摘为了减少文本情感分析方法中对分词准确性的依赖程度,同时,也为了解决一词多义的问题,提出了一种基于BERT和双向长短时记忆网络(BiLSTM)的文本情感分类模型.首先,该模型采用BERT(Bidirectional Encode,Representation from Transformers,BERT)预训练的字向量替代传统方式训练的词向量,然后利用BiLSTM对文本上下文进行关系特征提取,最后再利用Softmax分类器获得文本所属情感类别.实验证明,与LSTM、BiLSTM、TextCNN和BERT-LSTM模型相比,该模型在综合评价指标F1上分别提高了6.78%、6.74%、2.52%和1.01%;测试集正确率分别提升了6.66%、6.31%、1.95%和0.85%.
文摘针对眼底视网膜血管图像特征信息复杂,现有的血管分割算法对细小血管特征难以采集和血管误分割等问题,提出一种融合U-Net网络和密集网络的分割方法.首先,提取眼底图像的绿通道,通过限制对比度自适应直方图均衡化对图像进行血管增强处理,其次,利用局部自适应Gamma校正来调整眼底图像的亮度信息,同时在卷积层之间引入一种动态激活函数,提高网络的特征表达能力,最后输入到改进网络模型中进行分割.该算法在DRIVE(digital retinal images for vessel extraction)和STARE(structured analysis of the retina)两个公开数据集上的准确率分别为96.28%和96.85%,特异性分别为98.46%和98.55%,灵敏度分别为80.47%和81.38%.实验表明所提方法能够准确识别并分割出眼底细微血管,提高了视网膜血管分割的准确率.