期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合CBAM的YOLOv4轻量化检测方法 被引量:2
1
作者 任丰仪 裴信彪 +1 位作者 乔正 白越 《小型微型计算机系统》 CSCD 北大核心 2023年第5期1008-1014,共7页
基于深度学习的目标检测算法应用于无人机视觉中,会极大提升无人机的场景理解能力,但模型参数量和计算量巨大,难以应用于移动端或嵌入式平台.因此本文提出了一种效果较好的轻量级实时检测模型,采用YOLOv4模型网络作为主要参考模型,使用M... 基于深度学习的目标检测算法应用于无人机视觉中,会极大提升无人机的场景理解能力,但模型参数量和计算量巨大,难以应用于移动端或嵌入式平台.因此本文提出了一种效果较好的轻量级实时检测模型,采用YOLOv4模型网络作为主要参考模型,使用MobileNet替换主干网络,并通过添加CBAM注意力机制以及Soft-NMS后处理策略来提高模型的准确性.选用PASCAL VOC数据集来测试所提出的轻量级YOLOv4模型,结果显示参数量只有原模型的一半,但速度FPS提升了26.48,精度mAP只下降了0.52%.将所提出的轻量化YOLOv4模型部署Nvidia Jetson TX2低功耗系统以及树莓派上,飞行试验显示在TX2上模型FPS达到了21.8,是原始的YOLOv4的4.74倍,将本算法部署到无人机装载的嵌入式平台上,能够对航拍视野中的车辆目标进行实时识别和定位. 展开更多
关键词 无人机图像 YOLOv4 MobileNet CBAM 柔性非极大抑制策略
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部