传统的空间望远镜是根据分辨率衍射极限公式,通过增大系统的通光口径来提高分辨率的,但这样系统的体积和重量相应增大,增加了空间运载的难度。负折射率材料(Negative Index Materials,NIMs)的出现,为高分辨率空间望远镜的发展提供了新...传统的空间望远镜是根据分辨率衍射极限公式,通过增大系统的通光口径来提高分辨率的,但这样系统的体积和重量相应增大,增加了空间运载的难度。负折射率材料(Negative Index Materials,NIMs)的出现,为高分辨率空间望远镜的发展提供了新的思路。NIMs对含有物体精细结构信息但在真空中随距离指数衰减传播的渐失场有增益放大作用,从而使渐失场能够参与成像,实现光学系统传统分辨率衍射极限的突破。本文介绍了NIMs的研究历史,分析了由负折射产生的负群速度、逆Doppler频移、反常Cerenkov辐射、负折射等各种效应,重点讨论了采用NIMs实现望远系统传统分辨率突破的内涵和意义以及今后研究工作的重点。展开更多
文摘传统的空间望远镜是根据分辨率衍射极限公式,通过增大系统的通光口径来提高分辨率的,但这样系统的体积和重量相应增大,增加了空间运载的难度。负折射率材料(Negative Index Materials,NIMs)的出现,为高分辨率空间望远镜的发展提供了新的思路。NIMs对含有物体精细结构信息但在真空中随距离指数衰减传播的渐失场有增益放大作用,从而使渐失场能够参与成像,实现光学系统传统分辨率衍射极限的突破。本文介绍了NIMs的研究历史,分析了由负折射产生的负群速度、逆Doppler频移、反常Cerenkov辐射、负折射等各种效应,重点讨论了采用NIMs实现望远系统传统分辨率突破的内涵和意义以及今后研究工作的重点。