期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进YOLO v5s的温室番茄检测模型轻量化研究
1
作者 赵方 左官芳 +2 位作者 顾思睿 任肖恬 陶旭 《江苏农业科学》 北大核心 2024年第8期200-209,共10页
番茄检测模型的检测速度和识别精度会直接影响到番茄采摘机器人的采摘效率,因此,为实现复杂温室环境下对番茄精准实时的检测与识别,为采摘机器人视觉系统研究提供重要的参考价值,提出一种以YOLO v5s模型为基础,使用改进的MobileNet v3... 番茄检测模型的检测速度和识别精度会直接影响到番茄采摘机器人的采摘效率,因此,为实现复杂温室环境下对番茄精准实时的检测与识别,为采摘机器人视觉系统研究提供重要的参考价值,提出一种以YOLO v5s模型为基础,使用改进的MobileNet v3结构替换主干网络,平衡模型速度和精度。同时,在颈部网络引入Ghost轻量化模块和CBAM注意力机制,在保证模型检测精度的同时提高模型的检测速度。通过扩大网络的输入尺寸,并设置不同尺度的检测网络来提高对远距离小目标番茄的识别精度。采用SIoU损失函数来提高模型训练的收敛速度。最终,改进YOLO v5s模型检测番茄的精度为94.4%、召回率为92.5%、均值平均精度为96.6%、模型大小为71MB、参数量为3.69M、浮点运算(FLOPs)为6.0G,改进的模型很好地平衡了模型检测速度和模型识别精度,能够快速准确地检测和识别复杂温室环境下的番茄,且对远距离小目标番茄等复杂场景都能实现准确检测与识别,该轻量化模型未来能够应用到嵌入式设备,对复杂环境下的温室番茄实现实时准确的检测与识别。 展开更多
关键词 番茄 小目标检测 YOLOv5s 轻量化网络 注意力机制
下载PDF
基于AMI-CycleGAN的海洋垃圾图像增强算法
2
作者 任肖恬 左官芳 +1 位作者 陶旭 赵方 《国外电子测量技术》 北大核心 2023年第6期33-42,共10页
针对循环生成对抗网络(CycleGAN)的海洋垃圾图像增强存在色彩失真、轮廓模糊的问题,提出一种结合自适应空间特征融合的多输入循环生成对抗网络(AMI-CycleGAN)。首先,减少生成器U-Net的网络深度和跨层连接次数以减少参数量,借助平滑扩张... 针对循环生成对抗网络(CycleGAN)的海洋垃圾图像增强存在色彩失真、轮廓模糊的问题,提出一种结合自适应空间特征融合的多输入循环生成对抗网络(AMI-CycleGAN)。首先,减少生成器U-Net的网络深度和跨层连接次数以减少参数量,借助平滑扩张卷积避免网格伪影,得到多尺度感受野信息;其次,引入自适应空间特征融合来解决因垃圾尺寸不一导致不同层特征图融合时的信息冲突,得到语义信息丰富的融合特征图,通过与色彩校正网络的增强特征图融合保留了原图像的色彩信息;最后,引入边缘差损失函数和内容感知损失函数丰富细节信息。在trash_ICRA19上,与CycleGAN相比,其结构相似性值和峰值信噪比分别提升了27.52%和20.75%。与FUnIE-GAN相比,其参数量减少了79.36%,计算速度提高了12.50%。该算法改善了CycleGAN的色彩失真和轮廓模糊问题,且能达到实时检测标准。 展开更多
关键词 循环生成对抗网络 海洋垃圾图像 自适应空间特征融合 多输入 平滑扩张卷积
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部