期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
利用加速度信号时频域特征的枪击识别研究
被引量:
1
1
作者
伍弘毅
陈志聪
+1 位作者
吴丽君
何虔恩
《电子测量与仪器学报》
CSCD
北大核心
2022年第5期180-187,共8页
当前枪支射弹可靠检测及精确计数是枪弹管控的难点之一。为提高基于加速度信号的射弹检测算法的精度和可靠性,提出一种新的射击信号时域特征提取方法—时域分段特征提取法,可避免时域特征过度依赖于加速度瞬时尖峰的问题。首先,提取了...
当前枪支射弹可靠检测及精确计数是枪弹管控的难点之一。为提高基于加速度信号的射弹检测算法的精度和可靠性,提出一种新的射击信号时域特征提取方法—时域分段特征提取法,可避免时域特征过度依赖于加速度瞬时尖峰的问题。首先,提取了枪击加速度样本信号的时域和频域各类统计特征。然后,采用机器学习分类算法K近邻、逻辑回归、支持向量机以及决策树和随机森林进行枪击识别建模。最后,探索和比较各种单一特征对枪击事件识别模型性能的影响。实验结果表明,所提取的主波动域面积特征具有最优的区分度,能够在多数机器学习算法上达到99%以上的分类准确率。
展开更多
关键词
射击检测
加速度传感器
机器学习
特征提取
下载PDF
职称材料
题名
利用加速度信号时频域特征的枪击识别研究
被引量:
1
1
作者
伍弘毅
陈志聪
吴丽君
何虔恩
机构
福州大学物理与信息工程学院
出处
《电子测量与仪器学报》
CSCD
北大核心
2022年第5期180-187,共8页
基金
国家自然科学基金(61601127)
福建省工业和信息化厅(82318075)
福建省自然科学基金面上项目(2021J01580)资助。
文摘
当前枪支射弹可靠检测及精确计数是枪弹管控的难点之一。为提高基于加速度信号的射弹检测算法的精度和可靠性,提出一种新的射击信号时域特征提取方法—时域分段特征提取法,可避免时域特征过度依赖于加速度瞬时尖峰的问题。首先,提取了枪击加速度样本信号的时域和频域各类统计特征。然后,采用机器学习分类算法K近邻、逻辑回归、支持向量机以及决策树和随机森林进行枪击识别建模。最后,探索和比较各种单一特征对枪击事件识别模型性能的影响。实验结果表明,所提取的主波动域面积特征具有最优的区分度,能够在多数机器学习算法上达到99%以上的分类准确率。
关键词
射击检测
加速度传感器
机器学习
特征提取
Keywords
gun shooting detection
acceleration sensor
machine learning
feature extraction
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
E920.2 [兵器科学与技术—武器系统与运用工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
利用加速度信号时频域特征的枪击识别研究
伍弘毅
陈志聪
吴丽君
何虔恩
《电子测量与仪器学报》
CSCD
北大核心
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部