Treatment of the human esophageal cancer cell line EC8712 with retinoic acid (RA) stopped the cell growth significantly and gave rise to terminal differentiation of the cells characterized by increased expression of i...Treatment of the human esophageal cancer cell line EC8712 with retinoic acid (RA) stopped the cell growth significantly and gave rise to terminal differentiation of the cells characterized by increased expression of involucrin gene. Two cDNA libraries were constructed from the parental and RA-treated cells respectively. Repeated subtractive hybridization of single-stranded plasmid DNA prepared from pooled colonies of cDNA library of the parental cells with cDNA probe generated from the RA-treated cells exhausted sequences common to both libraries of the cell. The unhybridized cDNA probe represented, therefore, the genes activated after RA-treatment. By using these enriched cDNAs as probe to screen the cDNA library constructed from the RA-treated cells thirty-nine positive colonies were obtained, of which two were specifically due to RA-induction. One of these two cDNA clones, designated as pRA538, has undergone further analysis and shown differentiation-inducing effect on parental cancer cells. A novel strategy for cloning genes involved in terminal differentiation of cancer cells is developed.展开更多
基金Project supported by 863 High-Tech Foundation & World Lab.
文摘Treatment of the human esophageal cancer cell line EC8712 with retinoic acid (RA) stopped the cell growth significantly and gave rise to terminal differentiation of the cells characterized by increased expression of involucrin gene. Two cDNA libraries were constructed from the parental and RA-treated cells respectively. Repeated subtractive hybridization of single-stranded plasmid DNA prepared from pooled colonies of cDNA library of the parental cells with cDNA probe generated from the RA-treated cells exhausted sequences common to both libraries of the cell. The unhybridized cDNA probe represented, therefore, the genes activated after RA-treatment. By using these enriched cDNAs as probe to screen the cDNA library constructed from the RA-treated cells thirty-nine positive colonies were obtained, of which two were specifically due to RA-induction. One of these two cDNA clones, designated as pRA538, has undergone further analysis and shown differentiation-inducing effect on parental cancer cells. A novel strategy for cloning genes involved in terminal differentiation of cancer cells is developed.