期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于电力大数据的电力用户用电特征识别模型研究
1
作者 耿志慧 袁飞 +1 位作者 刘剑宁 伦晓娟 《自动化技术与应用》 2024年第2期89-93,共5页
采用目前方法对电力用户用电特征进行识别时,存在识别准确率低、F1分数低和识别结果易受用电数据分帧长度影响的问题。为此提出基于电力大数据的电力用户用电特征识别模型,利用电力数据采集系统采集用户用电数据,并调节用电数据负荷曲... 采用目前方法对电力用户用电特征进行识别时,存在识别准确率低、F1分数低和识别结果易受用电数据分帧长度影响的问题。为此提出基于电力大数据的电力用户用电特征识别模型,利用电力数据采集系统采集用户用电数据,并调节用电数据负荷曲线、数据标准化和数据降维,再利用K-means聚类算法提取预处理后优化用电数据的特征,将用电特征带入支持向量机中,根据分类结果实现电力用户用电特征的识别。实验结果表明,所提方法识别准确率高、F1分数高、识别结果不受用电数据分帧长度的影响。 展开更多
关键词 电力用户 K-MEANS聚类算法 支持向量机 用电特征识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部