Zn1-xMgxO films are grown on A-sapphire substrates by molecular beam epitaxy, and Mg content in the Zn1-xMgxO films is measured by electron probe microanalysis (EPMA) when the acceleration voltage, the emission curr...Zn1-xMgxO films are grown on A-sapphire substrates by molecular beam epitaxy, and Mg content in the Zn1-xMgxO films is measured by electron probe microanalysis (EPMA) when the acceleration voltage, the emission current, and the magnification are set to be 1 k V, 30 μA and 1000, respectively. The dead time is controlled within 17%-20% during the measurement with the receive angle of characteristic x-ray of 45°. The Mg content of the ZnMgO film is calculated by the low energy calibration and the ZAF calibration. By comparing the measurement result with the theoretical analysis and the EPMA result with the inductively coupled plasma (ICP), one can obtain that the measured value of Mg content of the samples is in good agreement with the theoretical analysis no matter whether the phase separation exists or not, and the correctness of ICP and EPMA is valid when Mg content in the samples is less than 0.5.展开更多
文摘Zn1-xMgxO films are grown on A-sapphire substrates by molecular beam epitaxy, and Mg content in the Zn1-xMgxO films is measured by electron probe microanalysis (EPMA) when the acceleration voltage, the emission current, and the magnification are set to be 1 k V, 30 μA and 1000, respectively. The dead time is controlled within 17%-20% during the measurement with the receive angle of characteristic x-ray of 45°. The Mg content of the ZnMgO film is calculated by the low energy calibration and the ZAF calibration. By comparing the measurement result with the theoretical analysis and the EPMA result with the inductively coupled plasma (ICP), one can obtain that the measured value of Mg content of the samples is in good agreement with the theoretical analysis no matter whether the phase separation exists or not, and the correctness of ICP and EPMA is valid when Mg content in the samples is less than 0.5.