High-throughput(HTP)experiments play key roles in accelerating the discovery of advanced materials,but the HTP preparation and characterization,especially for bulk samples,are extremely difficult.In this work,we devel...High-throughput(HTP)experiments play key roles in accelerating the discovery of advanced materials,but the HTP preparation and characterization,especially for bulk samples,are extremely difficult.In this work,we developed a novel and general strategy for HTP screening of high-performance bulk thermoelectric materials.The performed fullchain HTP experiments cover rapid synthesis of the bulk sample with quasi-continuous composition,microarea phase identification and structure analysis,and measurement of the spatial distribution of the sample composition,electrical and thermal transport properties.According to our experiments,bulk Bi_(2-x)Sb_(x)Te_(3)(x=1-2)and Bi_(2)Te_(3-x)Se_(x)(x=0-1.5)samples with quasi-continuous compositions have been rapidly fabricated by this HTP method.The target thermoelectric materials with the best Sb/Bi and Te/Se ratios are successfully screened out based on subsequent HTP characterization results,demonstrating that this HTP technique is effective in speeding up the exploration of novel high-performance thermoelectric materials.展开更多
基金supported by the National Key Research and Development Program of China(2018YFB0703600 and 2018YFA0702100)the National Natural Science Foundation of China(51772186,51632005 and 51371194)。
文摘High-throughput(HTP)experiments play key roles in accelerating the discovery of advanced materials,but the HTP preparation and characterization,especially for bulk samples,are extremely difficult.In this work,we developed a novel and general strategy for HTP screening of high-performance bulk thermoelectric materials.The performed fullchain HTP experiments cover rapid synthesis of the bulk sample with quasi-continuous composition,microarea phase identification and structure analysis,and measurement of the spatial distribution of the sample composition,electrical and thermal transport properties.According to our experiments,bulk Bi_(2-x)Sb_(x)Te_(3)(x=1-2)and Bi_(2)Te_(3-x)Se_(x)(x=0-1.5)samples with quasi-continuous compositions have been rapidly fabricated by this HTP method.The target thermoelectric materials with the best Sb/Bi and Te/Se ratios are successfully screened out based on subsequent HTP characterization results,demonstrating that this HTP technique is effective in speeding up the exploration of novel high-performance thermoelectric materials.