为了对腭裂语音的高鼻音进行等级区分,提出基于声学特征参数分析的腭裂语音高鼻音等级自动识别算法,提取基于香农能量和Mel倒谱系数(Mel frequency cepstrum coefficient,MFCC)的S-MFCC作为声学特征参数,结合高斯混合模型(Gaussian mixt...为了对腭裂语音的高鼻音进行等级区分,提出基于声学特征参数分析的腭裂语音高鼻音等级自动识别算法,提取基于香农能量和Mel倒谱系数(Mel frequency cepstrum coefficient,MFCC)的S-MFCC作为声学特征参数,结合高斯混合模型(Gaussian mixture model,GMM)分类器实现对腭裂语音4类高鼻音等级(正常、轻度、中度和重度)的自动识别。实验结果表明,提出的自动识别算法取得了较高的高鼻音类别正确识别率,对4类高鼻音的平均识别率达到79%以上,其中,提出的S-MFCC参数取得了85%的平均正确识别率,优于传统的香农能量算法、MFCC算法,具有较高的临床应用价值。展开更多