针对跨年龄人脸验证任务中面部纹理、形状特征变化的问题,提出一种基于双编码平均局部二值模式(dual-coded average local binary pattern,DCALBP)与深度学习算法相结合的多任务人脸验证算法。首先,使用多任务卷积神经网络(multi-task c...针对跨年龄人脸验证任务中面部纹理、形状特征变化的问题,提出一种基于双编码平均局部二值模式(dual-coded average local binary pattern,DCALBP)与深度学习算法相结合的多任务人脸验证算法。首先,使用多任务卷积神经网络(multi-task convolutional neural network,MTCNN)对人脸检测图片进行预处理,引入双编码平均局部二值模式(DCALBP)和梯度直方图算法(histogram of oriented gradient,HOG)提取人脸的局部纹理特征和形状特征,运用典型相关性分析(canonical correlation analysis,CCA)算法将两种特征融合,得到人脸年龄特征。然后,孪生网络(siamese network)提取人脸面部特征,并将纹理形状特征从中分离,抑制年龄因素对人脸验证的影响,从而得到具有年龄不变性的人脸特征。最后进行人脸特征匹配,实现跨年龄人脸验证。通过在数据集FG-NET、MORPH Album2以及经过处理的综合数据集上进行实验,准确率分别为89.73%、98.32%和98.27%,充分验证了该方法的有效性。展开更多
文摘针对跨年龄人脸验证任务中面部纹理、形状特征变化的问题,提出一种基于双编码平均局部二值模式(dual-coded average local binary pattern,DCALBP)与深度学习算法相结合的多任务人脸验证算法。首先,使用多任务卷积神经网络(multi-task convolutional neural network,MTCNN)对人脸检测图片进行预处理,引入双编码平均局部二值模式(DCALBP)和梯度直方图算法(histogram of oriented gradient,HOG)提取人脸的局部纹理特征和形状特征,运用典型相关性分析(canonical correlation analysis,CCA)算法将两种特征融合,得到人脸年龄特征。然后,孪生网络(siamese network)提取人脸面部特征,并将纹理形状特征从中分离,抑制年龄因素对人脸验证的影响,从而得到具有年龄不变性的人脸特征。最后进行人脸特征匹配,实现跨年龄人脸验证。通过在数据集FG-NET、MORPH Album2以及经过处理的综合数据集上进行实验,准确率分别为89.73%、98.32%和98.27%,充分验证了该方法的有效性。