针对退火后的2195铝锂合金在变形温度为400~490℃、应变速率为0.01~10 s^(−1)条件下进行等温热压缩实验,对获得的真应力应变曲线进行摩擦力和温升效应的修正,并基于修正后的真应力真应变建立材料的本构关系。结果表明:实验值和预测值的...针对退火后的2195铝锂合金在变形温度为400~490℃、应变速率为0.01~10 s^(−1)条件下进行等温热压缩实验,对获得的真应力应变曲线进行摩擦力和温升效应的修正,并基于修正后的真应力真应变建立材料的本构关系。结果表明:实验值和预测值的相关系数R为0.99584,平均绝对误差(AARE)为3.698%,表明所建立的本构模型能很好地预测2195铝锂合金在不同变形参数下的流动应力值;基于修正后应力应变数据,通过将流变失稳图(传统热加工图)(conventional hot processing map,CHP)与变形激活能值Q耦合,建立了激活能加工(activation energy processing,AEP)图,优化出合金的热加工窗口为:应变速率<0.4 s^(−1),温度475~490℃。展开更多
The effects of size distribution,morphology and volume fraction ofγ′phase and grain size on tensile properties of powder processed Ni-based superalloy were investigated by using two different quenching methods.Oil q...The effects of size distribution,morphology and volume fraction ofγ′phase and grain size on tensile properties of powder processed Ni-based superalloy were investigated by using two different quenching methods.Oil quenching and air cooling were adopted with cooling rate of 183°C/s and 4?15°C/s,respectively.The experimental results show that the average size of the secondaryγ′after oil quenching is 24.5 nm compared with 49.8 nm under air cooling,and corresponding volume fractions ofγ′are 29%and 34%,respectively.Meanwhile,the average grain size remains nearly equivalent from both oil-quenching and air-cooling specimens.The tensile strength at room temperature is higher for the oil-quenched specimen than the equivalent from the air-cooled specimen,but the difference approaches each other as the temperature increases to 650°C.The fractography clearly demonstrates that transgranular fracture governs the failure process at ambient temperature,in contrast to the intergranular fracture at 650°C or even higher temperature.These two mechanical responses indicate the strengthening effects ofγ′precipitates and grain boundary for polycrystalline Ni-based superalloys at different temperatures.展开更多
文摘分别采用氩气雾化(Argon atomization,AA)和等离子旋转电极(Plasma rotating electrode process,PREP)两种方法制备具有不同特性的镍基高温合金粉末,然后在相同条件下对两种粉末进行热等静压制备成块体材料(A-HIP及P-HIP)。分别对粉末和块体材料进行显微组织分析和形貌表征,并对热等静压材料在温度为1000~1100℃下、应变速率为0.01~1.0 s-1下进行热压缩实验,利用采集的应力、应变参数,通过迭代和线性回归的方法计算热激活能并构建本构方程,并利用所建立的本构方程预测合金在不同应变下的应力。结果表明:PREP粉末表面洁净度、球形度和粒径均匀度要比AA粉末的好,其表面氧含量也相对较低,仅为0.0079%,而AA粉末中氧含量为0.0139%(质量分数);相比P-HIP,A-HIP中分布着较多的原始颗粒边界和孔洞,原始颗粒边界的主要组成是大尺寸的γ′相和碳氧化物颗粒;A-HIP的平均晶粒尺寸为8.59μm,P-HIP的平均晶粒尺寸为12.54μm;A-HIP的强化相γ′的体积分数(43.91%)与P-HIP的强化相γ′体积分数(43.65%)基本相等。两种材料的激活能分别为1012.9 k J/mol和757.1 k J/mol,并采用双曲正弦Arrhenius模型构建不同应变下的本构方程并预测不同变形条件下的真应力,其与实验值间的绝对误差分别为6.46%和4.87%。A-HIP在压缩过程出现宏观裂纹,原始颗粒边界是压缩裂纹产生主要因素之一,且裂纹沿原始颗粒边界进行扩展。
基金funded by the National Key Research and Development Plan of China(No.2020YFA0711104)the Project of State Key Laboratory of High Performance Complex Manufacturing,Central South University,China(No.ZZYJKT2019-04)+1 种基金Scientific Research Initial Funding of Central South University,China(No.202045001)the National Natural Science Foundation of China(No.51901247)。
文摘针对退火后的2195铝锂合金在变形温度为400~490℃、应变速率为0.01~10 s^(−1)条件下进行等温热压缩实验,对获得的真应力应变曲线进行摩擦力和温升效应的修正,并基于修正后的真应力真应变建立材料的本构关系。结果表明:实验值和预测值的相关系数R为0.99584,平均绝对误差(AARE)为3.698%,表明所建立的本构模型能很好地预测2195铝锂合金在不同变形参数下的流动应力值;基于修正后应力应变数据,通过将流变失稳图(传统热加工图)(conventional hot processing map,CHP)与变形激活能值Q耦合,建立了激活能加工(activation energy processing,AEP)图,优化出合金的热加工窗口为:应变速率<0.4 s^(−1),温度475~490℃。
基金Project(2012AA03A514)supported by the National High-Tech Research and Development Program of ChinaProjects(2016YFB0700300,2016YFB0701404)supported by the National Key Research and Development Program of China
文摘The effects of size distribution,morphology and volume fraction ofγ′phase and grain size on tensile properties of powder processed Ni-based superalloy were investigated by using two different quenching methods.Oil quenching and air cooling were adopted with cooling rate of 183°C/s and 4?15°C/s,respectively.The experimental results show that the average size of the secondaryγ′after oil quenching is 24.5 nm compared with 49.8 nm under air cooling,and corresponding volume fractions ofγ′are 29%and 34%,respectively.Meanwhile,the average grain size remains nearly equivalent from both oil-quenching and air-cooling specimens.The tensile strength at room temperature is higher for the oil-quenched specimen than the equivalent from the air-cooled specimen,but the difference approaches each other as the temperature increases to 650°C.The fractography clearly demonstrates that transgranular fracture governs the failure process at ambient temperature,in contrast to the intergranular fracture at 650°C or even higher temperature.These two mechanical responses indicate the strengthening effects ofγ′precipitates and grain boundary for polycrystalline Ni-based superalloys at different temperatures.