针对密度峰值聚类算法(Density Peaks Clustering Algorithm, DPC)用传统距离度量方式不能很好地反映数据分布,人为选取截断距离参数主观性较强等问题,设计了一种基于麻雀搜索算法改进的密度峰值聚类算法(Improved Density Peak Cluster...针对密度峰值聚类算法(Density Peaks Clustering Algorithm, DPC)用传统距离度量方式不能很好地反映数据分布,人为选取截断距离参数主观性较强等问题,设计了一种基于麻雀搜索算法改进的密度峰值聚类算法(Improved Density Peak Clustering Algorithm Based on Sparrow Search Algorithm, SSA-DPC)。该算法从两个方面进行改进:改变数据间的距离度量方式,用标准欧氏距离替代原算法中的欧氏距离;利用麻雀搜索算法(Sparrow Search Algorithm, SSA)较强的全局寻优能力,搜寻最佳截断距离值。通过对7个数据集进行仿真测试,证明SSA-DPC算法在3个评价指标上均优于其他聚类算法,提升了聚类性能,说明了算法的有效性。展开更多
文摘针对密度峰值聚类算法(Density Peaks Clustering Algorithm, DPC)用传统距离度量方式不能很好地反映数据分布,人为选取截断距离参数主观性较强等问题,设计了一种基于麻雀搜索算法改进的密度峰值聚类算法(Improved Density Peak Clustering Algorithm Based on Sparrow Search Algorithm, SSA-DPC)。该算法从两个方面进行改进:改变数据间的距离度量方式,用标准欧氏距离替代原算法中的欧氏距离;利用麻雀搜索算法(Sparrow Search Algorithm, SSA)较强的全局寻优能力,搜寻最佳截断距离值。通过对7个数据集进行仿真测试,证明SSA-DPC算法在3个评价指标上均优于其他聚类算法,提升了聚类性能,说明了算法的有效性。