期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于t-SNE降维的密度峰值聚类算法
1
作者 何婷霭 李秦 《滨州学院学报》 2023年第2期83-87,共5页
为了提高密度峰值聚类(DPC)算法处理复杂高维数据的能力,提出了一种基于t-SNE降维的密度峰值聚类算法(t-SNE-DPC)。该算法用t-SNE算法对数据进行预处理,将高维数据点间的关系用概率分布映射到低维空间中,通过最小化相对熵最大化保留数... 为了提高密度峰值聚类(DPC)算法处理复杂高维数据的能力,提出了一种基于t-SNE降维的密度峰值聚类算法(t-SNE-DPC)。该算法用t-SNE算法对数据进行预处理,将高维数据点间的关系用概率分布映射到低维空间中,通过最小化相对熵最大化保留数据的本质特征,使用密度峰值聚类算法进行聚类操作。仿真实验结果表明,t-SNE-DPC可以高效地对高维数据进行聚类,在AMI指标上的聚类结果可达0.828。 展开更多
关键词 聚类分析 密度峰值聚类 t-SNE算法 有效性度量
下载PDF
基于麻雀搜索算法改进的密度峰值聚类算法
2
作者 何婷霭 李秦 《理论数学》 2022年第10期1669-1678,共10页
针对密度峰值聚类算法(Density Peaks Clustering Algorithm, DPC)用传统距离度量方式不能很好地反映数据分布,人为选取截断距离参数主观性较强等问题,设计了一种基于麻雀搜索算法改进的密度峰值聚类算法(Improved Density Peak Cluster... 针对密度峰值聚类算法(Density Peaks Clustering Algorithm, DPC)用传统距离度量方式不能很好地反映数据分布,人为选取截断距离参数主观性较强等问题,设计了一种基于麻雀搜索算法改进的密度峰值聚类算法(Improved Density Peak Clustering Algorithm Based on Sparrow Search Algorithm, SSA-DPC)。该算法从两个方面进行改进:改变数据间的距离度量方式,用标准欧氏距离替代原算法中的欧氏距离;利用麻雀搜索算法(Sparrow Search Algorithm, SSA)较强的全局寻优能力,搜寻最佳截断距离值。通过对7个数据集进行仿真测试,证明SSA-DPC算法在3个评价指标上均优于其他聚类算法,提升了聚类性能,说明了算法的有效性。 展开更多
关键词 密度峰值聚类算法 麻雀搜索算法 截断距离 标准欧氏距离
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部