期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于学术知识图谱的增强语义表示与检索
1
作者
沈思
严大钰
+1 位作者
卞嘉欣
何宏旭
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2024年第6期108-118,共11页
知识图谱作为一个巨大的知识网络图,其中包含着实体概念、关系等信息.基于深度学习的语义表示虽然泛化性强,但对于一些专有知识的敏感度不高,所以许多研究尝试将知识图谱与神经网络结合.目前大部分知识图谱语义表示的方法是围绕通用领...
知识图谱作为一个巨大的知识网络图,其中包含着实体概念、关系等信息.基于深度学习的语义表示虽然泛化性强,但对于一些专有知识的敏感度不高,所以许多研究尝试将知识图谱与神经网络结合.目前大部分知识图谱语义表示的方法是围绕通用领域知识图谱展开的,没有针对学术领域的知识图谱语义表示方法的研究.本文以学术文献的全文本数据为研究对象,从基于学术知识图谱的语义表示方法切入研究,在构建学术知识图谱的基础上,对通用领域的研究方法(K-BERT)进行领域化改进(KEBERT),进一步使用实体知识增强文本的语义信息.通过开展下游任务的对比实验,在学术检索数据集上验证KEBERT、K-BERT和ERNIE的性能.实验采用检索任务中常用的NDCG评价指标对结果进行评价,实验结果表明改进后的KEBERT在检索任务上的效果优于其他模型.
展开更多
关键词
知识图谱
语义表示
增强语义
学术检索
下载PDF
职称材料
题名
基于学术知识图谱的增强语义表示与检索
1
作者
沈思
严大钰
卞嘉欣
何宏旭
机构
南京理工大学经济管理学院
南京农业大学信息管理学院
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2024年第6期108-118,共11页
基金
国家自然科学基金资助项目(71974094)。
文摘
知识图谱作为一个巨大的知识网络图,其中包含着实体概念、关系等信息.基于深度学习的语义表示虽然泛化性强,但对于一些专有知识的敏感度不高,所以许多研究尝试将知识图谱与神经网络结合.目前大部分知识图谱语义表示的方法是围绕通用领域知识图谱展开的,没有针对学术领域的知识图谱语义表示方法的研究.本文以学术文献的全文本数据为研究对象,从基于学术知识图谱的语义表示方法切入研究,在构建学术知识图谱的基础上,对通用领域的研究方法(K-BERT)进行领域化改进(KEBERT),进一步使用实体知识增强文本的语义信息.通过开展下游任务的对比实验,在学术检索数据集上验证KEBERT、K-BERT和ERNIE的性能.实验采用检索任务中常用的NDCG评价指标对结果进行评价,实验结果表明改进后的KEBERT在检索任务上的效果优于其他模型.
关键词
知识图谱
语义表示
增强语义
学术检索
Keywords
knowledge graph
semantic representation
enhanced semantics
academic retrieval
分类号
G255.1 [文化科学—图书馆学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于学术知识图谱的增强语义表示与检索
沈思
严大钰
卞嘉欣
何宏旭
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部