期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于LCASO-BPNN模型的单质硫溶解度预测
1
作者 汪洋 陈俊杰 +4 位作者 谢梦雨 何巾国 赵浩童 贺三 申小冬 《化学工程》 CAS CSCD 北大核心 2023年第12期56-61,共6页
使用智能算法对硫溶解度进行预测是分析解决硫沉积问题的重要路径之一。为提高算法精度,提出一种采用基于混沌理论与Logistic映射改进的原子搜索优化算法对BP神经网络的权值和阈值进行优化的LCASO-BPNN预测模型,考虑温度、压力及CH_(4)... 使用智能算法对硫溶解度进行预测是分析解决硫沉积问题的重要路径之一。为提高算法精度,提出一种采用基于混沌理论与Logistic映射改进的原子搜索优化算法对BP神经网络的权值和阈值进行优化的LCASO-BPNN预测模型,考虑温度、压力及CH_(4)、H_(2)S、CO_(2)摩尔分数5个影响硫溶解度的因素,选用224组实验数据对模型进行训练与预测,使用EAARD(平均绝对相对偏差)、ERMSE(均方根误差)、ESD(标准偏差)和测定系数R^(2)这4个评估参数对模型进行评估。模拟结果表明:提出的LCASO-BPNN预测模型的EAARD为4.60%,ERMSE为0.0367,ESD为0.0689,R^(2)为0.9978。较之前的研究,LCASO-BPNN模型具有预测精度高、误差小、模型简便的优势,可应用于实际工程。 展开更多
关键词 硫溶解度 BP神经网络 混沌理论 LOGISTIC映射 原子搜索优化算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部