期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Tri-Training半监督学习的非功能性需求分类方法在工业软件中的应用
1
作者
宋百灵
何彦众
+4 位作者
张泽贤
曾诚
俞嘉怡
刘进
胡文华
《武汉大学学报(理学版)》
CAS
CSCD
北大核心
2024年第3期367-375,共9页
结合Word2Vec的Skip-gram模型在提取复杂软件需求文档中细微语义差异方面的优势,提出了一种基于Tri-Training半监督学习的非功能性需求分类方法,旨在应对软件需求工程领域中标记样本数量有限的挑战,从而解决非功能性需求分类性能下降的...
结合Word2Vec的Skip-gram模型在提取复杂软件需求文档中细微语义差异方面的优势,提出了一种基于Tri-Training半监督学习的非功能性需求分类方法,旨在应对软件需求工程领域中标记样本数量有限的挑战,从而解决非功能性需求分类性能下降的问题。与传统应用于完全冗余视图或单一分类器的半监督学习算法不同,半监督学习Tri-training算法通过用自举抽样产生的3个不同的标记数据集初始化3个不同的分类器,利用三个分类器以多数投票规则来产生伪标记数据,从而解除对训练集的限制,提高分类框架的通用性和可用性。将本文方法应用于涵盖多个工业领域的PROMISE软件需求数据集中,结果表明,基于Tri-Training半监督学习的非功能性需求分类方法在不同标记比例的数据集上具有良好的分类性能,特别是在标记数据不足的情况下,相比于监督学习和其他半监督学习算法,该方法在召回率和F1值上具有显著优势。
展开更多
关键词
软件需求分类
半监督学习
TRI-TRAINING
原文传递
题名
基于Tri-Training半监督学习的非功能性需求分类方法在工业软件中的应用
1
作者
宋百灵
何彦众
张泽贤
曾诚
俞嘉怡
刘进
胡文华
机构
武汉理工大学计算机与人工智能学院
湖北大学人工智能学院
武汉大学计算机学院
出处
《武汉大学学报(理学版)》
CAS
CSCD
北大核心
2024年第3期367-375,共9页
基金
国家自然科学基金(62202350)
湖北省重点研发计划项目(2021BAA188)。
文摘
结合Word2Vec的Skip-gram模型在提取复杂软件需求文档中细微语义差异方面的优势,提出了一种基于Tri-Training半监督学习的非功能性需求分类方法,旨在应对软件需求工程领域中标记样本数量有限的挑战,从而解决非功能性需求分类性能下降的问题。与传统应用于完全冗余视图或单一分类器的半监督学习算法不同,半监督学习Tri-training算法通过用自举抽样产生的3个不同的标记数据集初始化3个不同的分类器,利用三个分类器以多数投票规则来产生伪标记数据,从而解除对训练集的限制,提高分类框架的通用性和可用性。将本文方法应用于涵盖多个工业领域的PROMISE软件需求数据集中,结果表明,基于Tri-Training半监督学习的非功能性需求分类方法在不同标记比例的数据集上具有良好的分类性能,特别是在标记数据不足的情况下,相比于监督学习和其他半监督学习算法,该方法在召回率和F1值上具有显著优势。
关键词
软件需求分类
半监督学习
TRI-TRAINING
Keywords
software requirement classification
semi-supervised learning
Tri-Training
分类号
TP311.52 [自动化与计算机技术—计算机软件与理论]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于Tri-Training半监督学习的非功能性需求分类方法在工业软件中的应用
宋百灵
何彦众
张泽贤
曾诚
俞嘉怡
刘进
胡文华
《武汉大学学报(理学版)》
CAS
CSCD
北大核心
2024
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部