针对密度峰值算法(density peaks cluster,DPC)依靠先验知识给定截断距离dc且人工选择聚类中心点具有主观随意性等缺陷,提出一种基于遗传算法求取分割图像最大熵值,获得最优分割阈值的方法。得到满意的分割效果,实现了DPC算法的自适应...针对密度峰值算法(density peaks cluster,DPC)依靠先验知识给定截断距离dc且人工选择聚类中心点具有主观随意性等缺陷,提出一种基于遗传算法求取分割图像最大熵值,获得最优分割阈值的方法。得到满意的分割效果,实现了DPC算法的自适应分割并应用到医学图像上。仿真实验采用多张哈佛全脑图中的经典疾病图像,与K-means、AP (仿射传播)聚类算法及DPC算法作比较,比较结果表明,DPC的改进算法能自动获取截断距离,确定聚类中心,获得更好的分割效果。展开更多
在医学图像分割研究中,针对密度峰值聚类算法(density peaks clustering algorithm,DPC),依靠先验知识给定截断距离dc且人工选择聚类中心点具有主观随意性等缺陷,提出了一种结合蚁群算法选取密度峰值聚类最优参数的医学图像分割方法.该...在医学图像分割研究中,针对密度峰值聚类算法(density peaks clustering algorithm,DPC),依靠先验知识给定截断距离dc且人工选择聚类中心点具有主观随意性等缺陷,提出了一种结合蚁群算法选取密度峰值聚类最优参数的医学图像分割方法.该算法首先利用蚁群算法全局性和鲁棒性的优点,使用图像熵计算信息素来指导蚁群的搜索路径;再使用变量量化表示聚类中心个数,蚁群通过迭代选择最优截断距离dc和聚类中心,实现了DPC算法的自适应分割并得到了较好的分割效果.仿真实验分析证明了算法的有效性和实用性.展开更多
为了提高医学图像分割效果,针对密度峰值聚类算法(Density Peaks Clustering Algorithm,DPC)截断距离与聚类中心需要主观指定的缺点,提出一种果蝇算法优化密度峰值参数的医学图像分割算法。首先使用变量量化表示聚类中心个数,再...为了提高医学图像分割效果,针对密度峰值聚类算法(Density Peaks Clustering Algorithm,DPC)截断距离与聚类中心需要主观指定的缺点,提出一种果蝇算法优化密度峰值参数的医学图像分割算法。首先使用变量量化表示聚类中心个数,再使用随机步长取代果蝇算法中固定步长,避免陷入局部最优;最后,采用果蝇算法迭代计算图像熵值得到最佳气味浓度值的方法优化选择截断距离dc和聚类中心,实现图像分割。仿真实验表明本文算法能够自适应分割医学图像,具有较快的收敛性和良好的鲁棒性,分割效果优于DPC、K-means和AP等典型聚类算法。展开更多
文摘针对密度峰值算法(density peaks cluster,DPC)依靠先验知识给定截断距离dc且人工选择聚类中心点具有主观随意性等缺陷,提出一种基于遗传算法求取分割图像最大熵值,获得最优分割阈值的方法。得到满意的分割效果,实现了DPC算法的自适应分割并应用到医学图像上。仿真实验采用多张哈佛全脑图中的经典疾病图像,与K-means、AP (仿射传播)聚类算法及DPC算法作比较,比较结果表明,DPC的改进算法能自动获取截断距离,确定聚类中心,获得更好的分割效果。
文摘在医学图像分割研究中,针对密度峰值聚类算法(density peaks clustering algorithm,DPC),依靠先验知识给定截断距离dc且人工选择聚类中心点具有主观随意性等缺陷,提出了一种结合蚁群算法选取密度峰值聚类最优参数的医学图像分割方法.该算法首先利用蚁群算法全局性和鲁棒性的优点,使用图像熵计算信息素来指导蚁群的搜索路径;再使用变量量化表示聚类中心个数,蚁群通过迭代选择最优截断距离dc和聚类中心,实现了DPC算法的自适应分割并得到了较好的分割效果.仿真实验分析证明了算法的有效性和实用性.
文摘为了提高医学图像分割效果,针对密度峰值聚类算法(Density Peaks Clustering Algorithm,DPC)截断距离与聚类中心需要主观指定的缺点,提出一种果蝇算法优化密度峰值参数的医学图像分割算法。首先使用变量量化表示聚类中心个数,再使用随机步长取代果蝇算法中固定步长,避免陷入局部最优;最后,采用果蝇算法迭代计算图像熵值得到最佳气味浓度值的方法优化选择截断距离dc和聚类中心,实现图像分割。仿真实验表明本文算法能够自适应分割医学图像,具有较快的收敛性和良好的鲁棒性,分割效果优于DPC、K-means和AP等典型聚类算法。