期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于CNN的程序编译错误信息特征提取 被引量:1
1
作者 何烨辛 谷林 孙晨 《计算机技术与发展》 2021年第5期204-208,共5页
伴随着互联网行业的迅速发展,在自然语言处理领域中,有效地将输入表示为固定长度的特征向量是机器学习算法中的一个重要研究方向。海量的编译错误信息不仅可以用于程序错误相似度的研究,也可将编译错误信息进行聚类、分类之后给教师在... 伴随着互联网行业的迅速发展,在自然语言处理领域中,有效地将输入表示为固定长度的特征向量是机器学习算法中的一个重要研究方向。海量的编译错误信息不仅可以用于程序错误相似度的研究,也可将编译错误信息进行聚类、分类之后给教师在计算机编程类课程的教育教学中给予针对性的指导。这些应用的根本在于高效地提取编译错误信息特征。该文提出了一种基于word2vec模型结合卷积神经网络(convolutional neural networks, CNN)对编译错误信息进行特征提取的方法,首先利用word2vec工具中的skip-gram模型以词向量的形式表示编译错误信息,然后利用CNN神经网络完整地表征编译错误信息特征向量。有效地从可变长度的编译错误信息中学习固定长度的特征表示。最后使用支持向量机(SVM)分类算法进行实验结果的验证。结果表明,该特征提取方法在编译错误信息中有显著的效果。 展开更多
关键词 word2vec 编译错误信息 skip-gram模型 CNN 支持向量机
下载PDF
基于word2vec的程序编译错误信息特征提取方法 被引量:1
2
作者 何烨辛 谷林 孙晨 《计算机与数字工程》 2022年第6期1317-1322,共6页
输入表示为固定长度的特征向量是机器学习算法要求之一。针对编程中的编译错误信息特征,论文提出了基于word2vec模型对编译错误信息进行特征提取。利用滑动窗口取词的方式,建立one-hot字典,结合word2vec中的Skip-gram模型,构建Huffman树... 输入表示为固定长度的特征向量是机器学习算法要求之一。针对编程中的编译错误信息特征,论文提出了基于word2vec模型对编译错误信息进行特征提取。利用滑动窗口取词的方式,建立one-hot字典,结合word2vec中的Skip-gram模型,构建Huffman树,从可变长度的文本中学习固定长度的特征表示。最后使用SVM分类算法进行实验结果的验证。结果表明,该特征提取方法在编译错误信息中有显著的效果。 展开更多
关键词 word2vec 编译错误信息 Skip-gram模型 HUFFMAN树 SVM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部