期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于VGG19卷积神经网络和迁移学习的水稻病害图像分类方法 被引量:1
1
作者 廖露 韩春峰 何纯樱 《测绘》 2023年第4期153-157,181,共6页
本文在原有VGG19卷积神经网络的基础上,提出了一种基于迁移学习模型参数的水稻病害图像分类方法。该方法利用ImageNet数据集预训练生成的VGG19卷积神经网络,通过将网络相关参数迁移和调整的方式构建水稻病害图像分类的技术流程。通过对... 本文在原有VGG19卷积神经网络的基础上,提出了一种基于迁移学习模型参数的水稻病害图像分类方法。该方法利用ImageNet数据集预训练生成的VGG19卷积神经网络,通过将网络相关参数迁移和调整的方式构建水稻病害图像分类的技术流程。通过对图像的预处理扩充样本数据,针对病害特征利用训练集调整训练参数,并利用验证集进行性能实测优化分类模型,实现水稻病害图像的快速识别分类,最后利用测试集评价分类精度。测试结果表明,该方法能够很好实现水稻病害图像的分类,分类精度达到99%以上。 展开更多
关键词 VGG19 迁移学习 卷积层 迭代次数 混淆矩阵
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部