期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于收缩自编码器的无人机GPS欺骗攻击协同检测方法
1
作者 佘丁辰 王威 +3 位作者 王加琪 晋本周 刘敬颐 吴启晖 《信号处理》 CSCD 北大核心 2024年第4期706-718,共13页
GPS欺骗攻击是一种通过改变GPS信号来诱导接收机导航系统的恶意攻击,它会使无人机产生偏离运行轨迹、飞入禁飞区、强制降落等异常行为。当前对GPS欺骗攻击的检测仍存在模型训练效率较低、检测性能不高等问题,基于此,本文提出了一种无人... GPS欺骗攻击是一种通过改变GPS信号来诱导接收机导航系统的恶意攻击,它会使无人机产生偏离运行轨迹、飞入禁飞区、强制降落等异常行为。当前对GPS欺骗攻击的检测仍存在模型训练效率较低、检测性能不高等问题,基于此,本文提出了一种无人机GPS欺骗攻击协同检测方法。该方法采用联邦学习框架,多个基站通过本地接收的无人机运行数据协同训练异常检测模型并计算异常检测阈值,进而检测无人机是否存在GPS欺骗攻击。此外,为了防止在联邦学习过程中不同基站本地训练数据分布差异过大导致模型训练效果降低的问题,本文采用收缩自编码器作为异常检测模型。与自编码器相比,收缩自编码器通过在损失函数中加入新的损失项,将训练数据样本的低维表示压缩到更小的范围内,从而使模型在训练过程中能够更好地学习训练数据样本的低维特征,提高了模型区分正常数据和异常数据的能力。基于公开数据集的实验结果表明,本文提出的方法对无人机GPS欺骗攻击的准确率、查准率和召回率分别达到了96.49%、96.03%和93.85%,比原始的自编码器提高了1.63%、0.8%和4.62%,且与采用集中式学习框架相比,本文提出的协同检测方法能够显著提高模型的训练效率。同时,本文提出的联邦学习收缩自编码器受平衡系数改变的影响最小,在异常检测阈值计算不准确的情况下仍然能够达到较好的检测结果。 展开更多
关键词 无人机GPS欺骗攻击 联邦学习 收缩自编码器 协同检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部