期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合多时间尺度和特征加强的知识图谱推荐模型
1
作者 张素琪 王鑫鑫 +1 位作者 佘世耀 顾军华 《计算机应用》 CSCD 北大核心 2022年第4期1093-1098,共6页
针对现有的知识图谱推荐模型没有考虑到用户的周期特征以及待推荐项目会对用户近期兴趣产生影响的问题,提出一种融合多时间尺度和特征加强的知识图谱推荐模型(MTFE)。首先,采用长短期记忆(LSTM)网络在不同时间尺度上挖掘用户的周期特征... 针对现有的知识图谱推荐模型没有考虑到用户的周期特征以及待推荐项目会对用户近期兴趣产生影响的问题,提出一种融合多时间尺度和特征加强的知识图谱推荐模型(MTFE)。首先,采用长短期记忆(LSTM)网络在不同时间尺度上挖掘用户的周期特征并融入到用户表示中;然后,通过注意力机制挖掘待推荐项目中与用户近期特征相关性较强的特征,将其加强后融入项目表示中;最后,通过评分函数计算用户对待推荐项目的评分。在真实数据集Last.FM、MovieLens-1M和MovieLens-20M上把所提模型和个性化实体推荐(PER)、协同知识嵌入(CKE)、LibFM、RippleNet、知识图卷积网络(KGCN)、协同知识感知注意网络(CKAN)等知识图谱推荐模型进行对比。实验结果表明,在三个数据集上MTFE相较于表现最优的对比模型的F1性能分别提升了0.78、1.63和1.92个百分点,AUC指标在三个数据集上分别提升了3.94、2.73和1.15个百分点。可见,所提模型相较于对比图谱推荐模型有更好的推荐效果。 展开更多
关键词 推荐算法 知识图谱 周期特征 时间尺度 近期特征 特征加强
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部