期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv5x算法的海上风机叶片缺陷检测系统
1
作者 余健威 邓超 +1 位作者 张颖 陈晓敏 《海洋技术学报》 2024年第5期102-112,共11页
随着海上风电的蓬勃发展,运维工作越来越成为突出问题。风电叶片作为风电大尺寸关键构件,其运维对机组至关重要。本文针对海上风机叶片人工运维检测存在的高风险、低效率和低精度等问题,提出了一种基于改进YOLOv5x(You Only Look Once v... 随着海上风电的蓬勃发展,运维工作越来越成为突出问题。风电叶片作为风电大尺寸关键构件,其运维对机组至关重要。本文针对海上风机叶片人工运维检测存在的高风险、低效率和低精度等问题,提出了一种基于改进YOLOv5x(You Only Look Once version 5x)算法的海上风机叶片缺陷机器视觉检测系统。该方法引入了卷积块注意力机制(Convolutional Block Attention Module,CBAM),以增强神经网络对输入特征的感知能力,使用智慧交并比(Wise Intersection over Union,WIoU)作为损失函数,减少人工标注数据的误差,提高目标检测的准确性。基于海上风机叶片缺陷数据对模型进行训练,将训练好的模型封装成海上风机叶片机器视觉识别系统。试验结果显示,改进后的YOLOv5x算法,相比于原有的YOLOv5x,平均精度均值(mean Average Precision,mAP)提高了4.71%,准确率(Precision)提高了7.48%,且能满足实时性需求。 展开更多
关键词 海上风机叶片 缺陷检测 CBAM WIoU
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部