A radar-infrared compatible stealth surface is designed and analyzed.Without modifying the radar absorbing material(RAM),the design can theoretically achieve radar-infrared compatibility and broadband radar absorption...A radar-infrared compatible stealth surface is designed and analyzed.Without modifying the radar absorbing material(RAM),the design can theoretically achieve radar-infrared compatibility and broadband radar absorption through surface patterns and structures.A transmission-line-based model(TLM)is developed to analyze the radar absorbing performance of the surface.Optimization of the structure geometries is conducted aiming to maximize the-10 d B absorption bandwidth in 2–18 GHz.Surface with optimized structure geometries exhibits a superior absorption bandwidth,more than twice the bandwidth of the original 1.5 mm RAM slab,while maintaining a relatively low infrared emissivity.展开更多
基金the Science&Technology Innovation Fund of AVIC Manufacturing Technology Institute,China(Grant No.KS91007113)。
文摘A radar-infrared compatible stealth surface is designed and analyzed.Without modifying the radar absorbing material(RAM),the design can theoretically achieve radar-infrared compatibility and broadband radar absorption through surface patterns and structures.A transmission-line-based model(TLM)is developed to analyze the radar absorbing performance of the surface.Optimization of the structure geometries is conducted aiming to maximize the-10 d B absorption bandwidth in 2–18 GHz.Surface with optimized structure geometries exhibits a superior absorption bandwidth,more than twice the bandwidth of the original 1.5 mm RAM slab,while maintaining a relatively low infrared emissivity.