Deep-level traps at the buried interface of perovskite and energy mismatch problems between the perovskite layer and heterogeneous interfaces restrict the development of ideal homogenized films and efficient perovskit...Deep-level traps at the buried interface of perovskite and energy mismatch problems between the perovskite layer and heterogeneous interfaces restrict the development of ideal homogenized films and efficient perovskite solar cells(PSCs)using the one-step spin-coating method.Here,we strategically employed sparingly soluble germanium iodide as a homogenized bulk in-situ reconstruction inducing material preferentially aggregated at the perovskite buried interface with gradient doping,markedly reducing deep-level traps and withstanding local lattice strain,while minimizing non-radiative recombination losses and enhancing the charge carrier lifetime over 9μs.Furthermore,this gradient doping assisted in modifying the band diagram at the buried interface into a desirable flattened alignment,substantially mitigating the energy loss of charge carriers within perovskite films and improving the carrier extraction equilibrium.As a result,the optimized device achieved a champion power conversion efficiency of 25.24% with a fill factor of up to 84.65%,and the unencapsulated device also demonstrated excellent light stability and humidity stability.This work provides a straightforward and reliable homogenization strategy of perovskite components for obtaining efficient and stable PSCs.展开更多
基金supported by the National Natural Science Foundation of China(62105292)Shaanxi Fundamental Science Research Project for Mathematics and Physics(22JSY015)+3 种基金Young Talent Fund of Xi’an Association for Science and Technology(959202313020)the Natural Science Foundation of Shaanxi Province(2021GXLH-Z-0 and 2020JZ-02)the project of Innovative Team of Shaanxi Province(2020TD-001)the China Fundamental Research Funds for the Central Universities。
文摘Deep-level traps at the buried interface of perovskite and energy mismatch problems between the perovskite layer and heterogeneous interfaces restrict the development of ideal homogenized films and efficient perovskite solar cells(PSCs)using the one-step spin-coating method.Here,we strategically employed sparingly soluble germanium iodide as a homogenized bulk in-situ reconstruction inducing material preferentially aggregated at the perovskite buried interface with gradient doping,markedly reducing deep-level traps and withstanding local lattice strain,while minimizing non-radiative recombination losses and enhancing the charge carrier lifetime over 9μs.Furthermore,this gradient doping assisted in modifying the band diagram at the buried interface into a desirable flattened alignment,substantially mitigating the energy loss of charge carriers within perovskite films and improving the carrier extraction equilibrium.As a result,the optimized device achieved a champion power conversion efficiency of 25.24% with a fill factor of up to 84.65%,and the unencapsulated device also demonstrated excellent light stability and humidity stability.This work provides a straightforward and reliable homogenization strategy of perovskite components for obtaining efficient and stable PSCs.
基金the support from the National Natural Science Foundation of China(NSFC)(U20A20128,52263027,22379060,52173169 and 52222312)the"Double Thousand Plan"Science and Technology Innovation High-end Talent Project of Jiangxi Province(jxsq2019201049)+2 种基金the Natural Science Foundation of Jiangxi Province(20231ZDH04036,20212BAB214055 and 20224ACB204007)China National Postdoctoral Program for Innovative Talents(BX2021117)China Postdoctoral Science Foundation(2021M700060)。