期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于CNN-SVM的输送带纵向撕裂检测方法研究
1
作者 张释如 余文瑾 王锐 《煤炭技术》 CAS 2024年第7期201-204,共4页
针对传统基于机器学习的输送带纵向检测方法中,特征提取过分依赖于人工设计的缺陷,采用卷积神经网络(CNN)对输送带纵向撕裂特征自动进行提取。但CNN中自带的Softmax分类器不能较好地解决非线性问题,而支持向量机(SVM)能利用核函数将向... 针对传统基于机器学习的输送带纵向检测方法中,特征提取过分依赖于人工设计的缺陷,采用卷积神经网络(CNN)对输送带纵向撕裂特征自动进行提取。但CNN中自带的Softmax分类器不能较好地解决非线性问题,而支持向量机(SVM)能利用核函数将向量映射到高维空间,将线性不可分的问题在高维空间线性可分,有效解决非线性问题,因此采用SVM代替CNN自带的Softmax分类器,提出一种基于CNN-SVM的输送带纵向撕裂检测方法。此外,在CNN中引入批量归一化(BN)、Dropout处理和SE注意力机制进行改进。实验结果表明,基于CNN-SVM的输送带纵向撕裂检测方法准确率可达到99.46%,有效提高了输送带纵向撕裂的检测准确率。 展开更多
关键词 纵向撕裂检测 特征提取 卷积神经网络 支持向量机 核函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部