High temperature Raman spectra was recorded in this paper.The phase transition of β BaB 2O 4(BBO),a widely used crystal and potassium lithium niobate (KLN)crystal,a newly crystal was studied by the Raman spectra.The ...High temperature Raman spectra was recorded in this paper.The phase transition of β BaB 2O 4(BBO),a widely used crystal and potassium lithium niobate (KLN)crystal,a newly crystal was studied by the Raman spectra.The phase transition temperature of BBO from β BaB 2O 4 to α BaB 2O 4 was confirmed to be about 927℃ and 500℃ of KLN from ferro electric phase to para electric phase.It was observed that the change of the distribution of Ba 2+ and the change of the structure of [B 3O 6] 3- rings were important symbols of the phase transition of BBO.The finger peak (629cm -1 )belonged to [B 3O 6] 3- rings still existed when the temperature was up to 1400K.This indicated that the basic growing unit of BBO was[B 3O 6] 3- rings not atoms.The phase transition of KLN was mainly due to the position shifting of all the particles at the transition point.The movement of Li + ions had great influence on the vibration modes in the crystal. The relation between the phase transition and the efficiency of frequency doubling was also studied.It was often observed that when the power of the incident light was increased to a certain degree,the conversion efficiency was no longer increased.This mainly because the phase transition temperature of the crystal was lower and phase transition occurred in the crystal.展开更多
When the crystal grows from solution,a sharp variated fluid layer of the solute concentration exists against crystal surface.The sharp variated fluid layer is defined the boundary layer in crystal growth.The molecular...When the crystal grows from solution,a sharp variated fluid layer of the solute concentration exists against crystal surface.The sharp variated fluid layer is defined the boundary layer in crystal growth.The molecular structure of the boundary layers plays a key role in crystal composition,morphology,growth rate and crystal growth mechanism.However,owing to the lacking of suitable probe technique,it is difficult to obtain the information of the moving construction of the boundary layers.Here,the laser Raman Microprobe combining with holographic phase contrast interferometric microphotography is used to probe in situ the molecular structure of the boundary layers during the crystal growth processes of KH 2PO 4(KDP) and KD 2PO 4(DKDP).In supersaturations ranging from 1% to 14%,Raman scattering states at the different positions within the boundary layers have been investigated,and compared with the bands of different concentration solutions alone using laser Raman spectroscopy between 600 and 1350cm -1 .The changes in band parameters of the phosphates within the boundary layers of crystal growth are different from those in solution alone.The influence of the solution concentration on the band parameters of anion phosphate within the layers is nonlinear.With increasing supersaturation,the full width at half height of the P=O 2 symmetric stretch band increases.The new 918(938)cm -1 H(D)O P OH(D) asymmetric stretch,1120(DKDP 1200)cm -1 O P O asymmetric stretch,and extremely weak 1210cm -1 P O H in plane deformation bands appear in the characteristic boundary layers.These new bands show that the cations have direct effects on the phosphate group(aggregates).Under the driving of concentration gradient field of supersaturation,the effects of cations cause the changes of O P O bond angle,atomic charge redistribution,and lead to readjust geometry of anion phosphate group and desolvation.The trend of readjust is close to the geometry of the crystal structure unit and the formation of the cations phosphate crystallization unit.展开更多
Thermal stress-induced birefringence in borate glass which has been irradiated by 800-nm femtosecond laser pulses is observed under cross-polarized light. Due to the high temperature and pressure formed in the focal v...Thermal stress-induced birefringence in borate glass which has been irradiated by 800-nm femtosecond laser pulses is observed under cross-polarized light. Due to the high temperature and pressure formed in the focal volume, the material at the edge of the micro-modified region is compressed between the expanding region and the unheated one, then stress emerges. Raman spectroscopy is used to investigate the stress distribution in the micro-modified region and indicates the redistributions of density and refractive index by Raman peak shift. We suggest that this technique can develop waveguide polarizers and Fresnel zone plates in integrated optics.展开更多
In this paper, we put emphasis on the analysis the mechanism of the photon induced frequency conversion β BaB 2O 4 crystal inside a borate glass using femtosecond laser. Because of the nature of femtosecond laser...In this paper, we put emphasis on the analysis the mechanism of the photon induced frequency conversion β BaB 2O 4 crystal inside a borate glass using femtosecond laser. Because of the nature of femtosecond laser's ultra short pulse duration and high energy density, in essence the laser glass interaction mechanism is changed. Based on multiphoton ionization, collisional ionization and the network depolymerization in the borate glass, production of the plasma drives the microstructure rearrangement near the laser beam focusing area. From the structure of glass and crystal analysis, we conclude that the complicated borate groups containing BO 3 and BO 4 units inside the glass are converted into(B 3O 6) -3 anion rings.展开更多
Multi-walled carbon nanombes with homogeneous diameters (40 - 60 nm), produced by chemical vapor deposition of hydrocarbon gas, are purified by nitric acids. Infrared and Raman studies indicate that oxygen containin...Multi-walled carbon nanombes with homogeneous diameters (40 - 60 nm), produced by chemical vapor deposition of hydrocarbon gas, are purified by nitric acids. Infrared and Raman studies indicate that oxygen containing surface groups, which are predominately carboxylic, phenolic and lactonic groups, are introduced into purified carbon nanotubes. Then three kinds of block-form porous tablets of carbon nanotubes are fabricated as electrodes in electrochemical double-layer capacitors. Using mounded mixture comprising carbon nanotubes and binder powders provides these tablets. Comparison of the effect of different processing on the structural performance of the capacitors is specifically investigated. Using chemically treated electrodes, electrochemical double-layer capacitors with a specific capacitance of about 33 F/g are obtained with 38 wt % H2SO4 as the electrolyte.展开更多
文摘High temperature Raman spectra was recorded in this paper.The phase transition of β BaB 2O 4(BBO),a widely used crystal and potassium lithium niobate (KLN)crystal,a newly crystal was studied by the Raman spectra.The phase transition temperature of BBO from β BaB 2O 4 to α BaB 2O 4 was confirmed to be about 927℃ and 500℃ of KLN from ferro electric phase to para electric phase.It was observed that the change of the distribution of Ba 2+ and the change of the structure of [B 3O 6] 3- rings were important symbols of the phase transition of BBO.The finger peak (629cm -1 )belonged to [B 3O 6] 3- rings still existed when the temperature was up to 1400K.This indicated that the basic growing unit of BBO was[B 3O 6] 3- rings not atoms.The phase transition of KLN was mainly due to the position shifting of all the particles at the transition point.The movement of Li + ions had great influence on the vibration modes in the crystal. The relation between the phase transition and the efficiency of frequency doubling was also studied.It was often observed that when the power of the incident light was increased to a certain degree,the conversion efficiency was no longer increased.This mainly because the phase transition temperature of the crystal was lower and phase transition occurred in the crystal.
文摘When the crystal grows from solution,a sharp variated fluid layer of the solute concentration exists against crystal surface.The sharp variated fluid layer is defined the boundary layer in crystal growth.The molecular structure of the boundary layers plays a key role in crystal composition,morphology,growth rate and crystal growth mechanism.However,owing to the lacking of suitable probe technique,it is difficult to obtain the information of the moving construction of the boundary layers.Here,the laser Raman Microprobe combining with holographic phase contrast interferometric microphotography is used to probe in situ the molecular structure of the boundary layers during the crystal growth processes of KH 2PO 4(KDP) and KD 2PO 4(DKDP).In supersaturations ranging from 1% to 14%,Raman scattering states at the different positions within the boundary layers have been investigated,and compared with the bands of different concentration solutions alone using laser Raman spectroscopy between 600 and 1350cm -1 .The changes in band parameters of the phosphates within the boundary layers of crystal growth are different from those in solution alone.The influence of the solution concentration on the band parameters of anion phosphate within the layers is nonlinear.With increasing supersaturation,the full width at half height of the P=O 2 symmetric stretch band increases.The new 918(938)cm -1 H(D)O P OH(D) asymmetric stretch,1120(DKDP 1200)cm -1 O P O asymmetric stretch,and extremely weak 1210cm -1 P O H in plane deformation bands appear in the characteristic boundary layers.These new bands show that the cations have direct effects on the phosphate group(aggregates).Under the driving of concentration gradient field of supersaturation,the effects of cations cause the changes of O P O bond angle,atomic charge redistribution,and lead to readjust geometry of anion phosphate group and desolvation.The trend of readjust is close to the geometry of the crystal structure unit and the formation of the cations phosphate crystallization unit.
基金Supported by the National Natural Science Foundation of China under Grant Nos 50125208 and 60377017, and the Shanghai Leading Academic Discipline Program.
文摘Thermal stress-induced birefringence in borate glass which has been irradiated by 800-nm femtosecond laser pulses is observed under cross-polarized light. Due to the high temperature and pressure formed in the focal volume, the material at the edge of the micro-modified region is compressed between the expanding region and the unheated one, then stress emerges. Raman spectroscopy is used to investigate the stress distribution in the micro-modified region and indicates the redistributions of density and refractive index by Raman peak shift. We suggest that this technique can develop waveguide polarizers and Fresnel zone plates in integrated optics.
文摘In this paper, we put emphasis on the analysis the mechanism of the photon induced frequency conversion β BaB 2O 4 crystal inside a borate glass using femtosecond laser. Because of the nature of femtosecond laser's ultra short pulse duration and high energy density, in essence the laser glass interaction mechanism is changed. Based on multiphoton ionization, collisional ionization and the network depolymerization in the borate glass, production of the plasma drives the microstructure rearrangement near the laser beam focusing area. From the structure of glass and crystal analysis, we conclude that the complicated borate groups containing BO 3 and BO 4 units inside the glass are converted into(B 3O 6) -3 anion rings.
基金Project supported by National High-Technology Research and De-velopment Program(Grant No .863 -2002AA302302)
文摘Multi-walled carbon nanombes with homogeneous diameters (40 - 60 nm), produced by chemical vapor deposition of hydrocarbon gas, are purified by nitric acids. Infrared and Raman studies indicate that oxygen containing surface groups, which are predominately carboxylic, phenolic and lactonic groups, are introduced into purified carbon nanotubes. Then three kinds of block-form porous tablets of carbon nanotubes are fabricated as electrodes in electrochemical double-layer capacitors. Using mounded mixture comprising carbon nanotubes and binder powders provides these tablets. Comparison of the effect of different processing on the structural performance of the capacitors is specifically investigated. Using chemically treated electrodes, electrochemical double-layer capacitors with a specific capacitance of about 33 F/g are obtained with 38 wt % H2SO4 as the electrolyte.