针对复杂环境下高铁轨道入侵异物对列车的安全行驶有严重的威胁,而现有检测方法不能满足实际的高铁轨道异物检测工作,提出一种基于改进YOLOv7的高铁异物入侵检测算法。引入CARAFE算子作为上采样算法,减少输入图像的特征信息损失,增大网...针对复杂环境下高铁轨道入侵异物对列车的安全行驶有严重的威胁,而现有检测方法不能满足实际的高铁轨道异物检测工作,提出一种基于改进YOLOv7的高铁异物入侵检测算法。引入CARAFE算子作为上采样算法,减少输入图像的特征信息损失,增大网络感受野;在YOLOv7模型中引入GhostConv卷积,可以有效地减少模型的计算量和参数量;引入全局注意力机制(Global Attention Mechanisms,GAM),增强全局信息交互能力和表达能力,提高检测性能;采用Alpha_GIoU损失函数,提升小目标的检测能力和模型的收敛速度。实验结果表明,改进后的YOLOv7-CGGA模型的平均检测精度(mean Average Precision,mAP)和平均每秒推理速度(Frames Per Second,FPS)值分别达到96.7%和96.1,与原YOLOv7模型相比,分别提升了1.6%和31.1,较好地平衡了模型的检测精度和效率,可以满足实际的检测需求。展开更多
文摘针对复杂环境下高铁轨道入侵异物对列车的安全行驶有严重的威胁,而现有检测方法不能满足实际的高铁轨道异物检测工作,提出一种基于改进YOLOv7的高铁异物入侵检测算法。引入CARAFE算子作为上采样算法,减少输入图像的特征信息损失,增大网络感受野;在YOLOv7模型中引入GhostConv卷积,可以有效地减少模型的计算量和参数量;引入全局注意力机制(Global Attention Mechanisms,GAM),增强全局信息交互能力和表达能力,提高检测性能;采用Alpha_GIoU损失函数,提升小目标的检测能力和模型的收敛速度。实验结果表明,改进后的YOLOv7-CGGA模型的平均检测精度(mean Average Precision,mAP)和平均每秒推理速度(Frames Per Second,FPS)值分别达到96.7%和96.1,与原YOLOv7模型相比,分别提升了1.6%和31.1,较好地平衡了模型的检测精度和效率,可以满足实际的检测需求。