风电功率区间预测是应对大规模风电机组并网运行的有效手段之一。针对山东风电并网运行建立了一种考虑山东半岛不同风能特征的风电功率区间预测模型。对比了不同风能条件下半岛内风电场出力特征和风电功率历史预测误差分布特点,发现风...风电功率区间预测是应对大规模风电机组并网运行的有效手段之一。针对山东风电并网运行建立了一种考虑山东半岛不同风能特征的风电功率区间预测模型。对比了不同风能条件下半岛内风电场出力特征和风电功率历史预测误差分布特点,发现风电场出力分布范围随风速增加呈"先增后减"趋势,在出力分布范围较大的风速区间内,预测误差也相对较大。以风速、风向和预测功率为特征变量,在利用层次聚类法对样本数据进行聚类分析基础上,采用非参量核密度估计方法,建立了各类样本在不同风向条件下风速-风电功率预测误差的联合概率密度分布模型。将该模型与NARX(nonlinear auto regressive models with exogenous inputs)网络确定性风电功率预测结果相结合,得到一定置信水平的风电功率区间预测结果,最后通过实际算例验证了模型的有效性。展开更多
文摘风电功率区间预测是应对大规模风电机组并网运行的有效手段之一。针对山东风电并网运行建立了一种考虑山东半岛不同风能特征的风电功率区间预测模型。对比了不同风能条件下半岛内风电场出力特征和风电功率历史预测误差分布特点,发现风电场出力分布范围随风速增加呈"先增后减"趋势,在出力分布范围较大的风速区间内,预测误差也相对较大。以风速、风向和预测功率为特征变量,在利用层次聚类法对样本数据进行聚类分析基础上,采用非参量核密度估计方法,建立了各类样本在不同风向条件下风速-风电功率预测误差的联合概率密度分布模型。将该模型与NARX(nonlinear auto regressive models with exogenous inputs)网络确定性风电功率预测结果相结合,得到一定置信水平的风电功率区间预测结果,最后通过实际算例验证了模型的有效性。