文摘针对现有发情检测方法灵敏度低、识别时间长、易受外界干扰等缺点,根据大白母猪试情时双耳竖立的特征,提出一种基于卷积神经网络(Convolutional neural network,CNN)的大白母猪发情行为识别方法。首先通过采集公猪试情时发情大白母猪与未发情大白母猪的耳部图像,划分训练集样本(80%)与验证集样本(20%)用于后期训练。随后,基于AlexNet卷积神经网络构建分类模型(AlexNet_Sow),并对该模型的网络结构进行简化,简化后的模型包含2个卷积模块和2个全连接模块,选择修正线性单元(Rectified linear units,ReLU)作为激活函数,用自适应矩估计(Adaptive moment estimation,Adam)方法优化梯度下降,选择Softmax作为网络分类器,通过结合增强学习的方法对模型进行训练,得到模型应用于验证集的准确率达到99%。此外,设定了发情鉴定的时间阈值,并结合LabVIEW的Python节点用于模型应用。当公猪试情时,大白母猪双耳竖立时长达到76 s时,则可判定其为发情。该方法对大白母猪发情识别的精确率、召回率与准确率分别为100%、83.33%、93.33%,平均单幅图像的检测时间为26.28 ms。该方法能够实现大白母猪发情的无接触自动快速检测,准确率高,大大降低了猪只应激情况和人工成本。