期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进的机器学习模型对重症急性胰腺炎诊断的早期预测 被引量:1
1
作者 李龙 尹梁宇 +6 位作者 种菲菲 童宁 黎娜 刘洁 余相江 王耀丽 许红霞 《陆军军医大学学报》 CAS CSCD 北大核心 2024年第7期753-759,共7页
目的基于改进的机器学习模型建立重症急性胰腺炎诊断的早期预测模型,并分析其临床价值。方法纳入2014年1月至2023年8月陆军特色医学中心消化内科、肝胆外科以及联勤保障部队第九四五医院急诊与重症医学科收治的352例急性胰腺炎患者,根... 目的基于改进的机器学习模型建立重症急性胰腺炎诊断的早期预测模型,并分析其临床价值。方法纳入2014年1月至2023年8月陆军特色医学中心消化内科、肝胆外科以及联勤保障部队第九四五医院急诊与重症医学科收治的352例急性胰腺炎患者,根据病情严重程度将其分为重症组(n=88)和非重症组(n=264),开展病例对照研究。利用RUSBoost模型以及改进的阿基米德优化算法,分析入院48 h内的39项常规实验室生化指标,帮助构建重症急性胰腺炎早期诊断预测模型,同步完成特征筛选和超参数优化,并利用ReliefF算法特征重要性排序和Logistic多因素分析,对筛选出的特征进行价值分析。结果在训练集上,改进机器学习模型的曲线下面积(area under curve,AUC)为0.922;在测试集上,改进机器学习模型的AUC达到了0.888。基于改进机器学习模型筛选出的预测重症急性胰腺炎发生的4个关键特征分别为C反应蛋白、血氯、血镁、纤维蛋白原水平,与ReliefF算法特征重要性排序和Logistic多因素分析结果相吻合。结论应用改进机器学习模型分析实验室检查结果,可帮助临床早期预测重症急性胰腺炎的发生。 展开更多
关键词 重症急性胰腺炎 机器学习模型 阿基米德优化算法 C反应蛋白
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部