期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于XGBoost模型的三峡库区燕山乡滑坡易发性评价与区划 被引量:3
1
作者 吴宏阳 周超 +2 位作者 梁鑫 袁鹏程 余蓝冰 《中国地质灾害与防治学报》 CSCD 2023年第5期141-152,共12页
滑坡易发性评价是精细化滑坡灾害风险评价的基础。为了提升滑坡易发性评价模型的精度和稳健性,以三峡库区万州区燕山乡为例,选取工程地质岩组、堆积层厚度等九个影响因子构建滑坡易发性评价指标体系,应用信息量模型定量分析滑坡发育与... 滑坡易发性评价是精细化滑坡灾害风险评价的基础。为了提升滑坡易发性评价模型的精度和稳健性,以三峡库区万州区燕山乡为例,选取工程地质岩组、堆积层厚度等九个影响因子构建滑坡易发性评价指标体系,应用信息量模型定量分析滑坡发育与指标之间的关系。在此基础上,随机选取70%/30%的滑坡样本作为训练/验证数据集,应用极致梯度提升模型(extreme gradient boosting,XGBoost)开展易发性评价。随后从模型预测精度和模型稳定性两方面将其与决策树模型(deci-sion tree,DT)和梯度提升树模型(gradient boosting decision tree,GBDT)进行对比。结果表明:研究区堆积层滑坡主要受长江水系、堆积层厚度和工程地质岩组影响。XGBoost模型具有最高的准确率(94.3%)和预测精度(97.3%)。在模型稳定性验证中,平均预测精度最高(97.3%),优于DT(91.3%)和GBDT(95.7%),模型标准差和变异系数均为0.01,低于其余两种模型。XGBoost在区域滑坡易发性评价与制图中得到了可靠的结果,为滑坡灾害空间预测提供了新的技术支撑。 展开更多
关键词 滑坡 易发性建模 极致梯度提升模型 预测精度 模型稳健性
下载PDF
考虑非滑坡样本选取和集成机器学习方法的水库滑坡易发性预测
2
作者 王悦 曹颖 +5 位作者 许方党 周超 余蓝冰 吴立星 汪洋 殷坤龙 《地球科学》 EI CAS CSCD 北大核心 2024年第5期1619-1635,共17页
准确的滑坡易发性建模对预警预报和风险管控具有重要意义.针对机器学习技术建模中非滑坡样本随机选取和单个分类器存在的精度不高问题,提出了一种耦合多模型的区域滑坡易发性建模框架.以三峡库区秭归-巴东段为例,选取高程、坡度等12个... 准确的滑坡易发性建模对预警预报和风险管控具有重要意义.针对机器学习技术建模中非滑坡样本随机选取和单个分类器存在的精度不高问题,提出了一种耦合多模型的区域滑坡易发性建模框架.以三峡库区秭归-巴东段为例,选取高程、坡度等12个因子构建评价指标体系,应用信息量法定量分析各指标对滑坡空间发育的影响程度.随机选取70%的滑坡作为训练样本,剩余的30%作为验证样本;应用逻辑回归模型(LR)制作研究区的初始易发性分区图,确定非滑坡随机采样的约束范围.随后,分别采用LR模型约束和无约束条件下随机选取的非滑坡样本,应用单个分类回归树(LR-CART和No-CART)及分类回归树-Bagging组合模型(LR-CART-Bagging和No-CART-Bagging)开展滑坡易发性建模,并应用多个指标进行精度评估.结果发现:高程和水系等是滑坡发育的主控因素;LR-CART-Bagging模型精度为0.973,高于LR-CART模型的0.889;相比于No-CART和No-CART-Bagging模型,LR-CART和LR-CART-Bagging模型精度分别提升了0.057和0.047.LR模型可以有效约束非滑坡样本的选取范围,提升样本的选取质量;CART-Bagging模型综合了机器学习和集成学习的优势,预测性能更强,提出的LR-CART-Bagging模型是一种准确可靠的滑坡易发性建模方法. 展开更多
关键词 机器学习 滑坡 易发性制图 非滑坡样本选取 集成学习 三峡库区 工程地质
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部