通过计算Al Ga N/Ga N HEMT二维电子气中的电势、载流子以及调制掺杂载流子寿命,得到Al Ga N/Ga N HEMT电容和充电时间,研究了Al Ga N掺杂层浓度和厚度对器件的时间响应,并分析了Al Ga N/Ga N HEMT器件的高频特性。结果表明,栅电容随着A...通过计算Al Ga N/Ga N HEMT二维电子气中的电势、载流子以及调制掺杂载流子寿命,得到Al Ga N/Ga N HEMT电容和充电时间,研究了Al Ga N掺杂层浓度和厚度对器件的时间响应,并分析了Al Ga N/Ga N HEMT器件的高频特性。结果表明,栅电容随着Al Ga N掺杂层浓度和厚度的增加逐渐减小。随着Al Ga N层掺杂浓度的增大,电容充电时间先减后增,当掺杂浓度达到1.24×1019cm-3时,电容充电时间达到极小值,在Al Ga N掺杂层厚度等于7 nm时电容充电时间最短。展开更多
文摘通过计算Al Ga N/Ga N HEMT二维电子气中的电势、载流子以及调制掺杂载流子寿命,得到Al Ga N/Ga N HEMT电容和充电时间,研究了Al Ga N掺杂层浓度和厚度对器件的时间响应,并分析了Al Ga N/Ga N HEMT器件的高频特性。结果表明,栅电容随着Al Ga N掺杂层浓度和厚度的增加逐渐减小。随着Al Ga N层掺杂浓度的增大,电容充电时间先减后增,当掺杂浓度达到1.24×1019cm-3时,电容充电时间达到极小值,在Al Ga N掺杂层厚度等于7 nm时电容充电时间最短。