蚊子复眼具有超疏水性和防雾功能,主要归功于蚊子复眼具有特殊的微、纳米分级结构。建立了复眼的微、纳米分级结构模型;并从界面疏水稳定性和热力学的角度进行了分析。界面稳定性分析表明蚊子眼微米和纳米级结构可抵抗的最大压力分别为6...蚊子复眼具有超疏水性和防雾功能,主要归功于蚊子复眼具有特殊的微、纳米分级结构。建立了复眼的微、纳米分级结构模型;并从界面疏水稳定性和热力学的角度进行了分析。界面稳定性分析表明蚊子眼微米和纳米级结构可抵抗的最大压力分别为67.2 k Pa和181 k Pa,能够有效地抵御外部雾滴的润湿。对于纳米尺度的小雾滴,由于受尺度和线张力的影响,类Wenzel状态的自由能高于类Cassie状态,因此在雾化过程中总是形成类Cassie状态,并进而形成Cassie状态。由于微米结构特别的半球形状和紧密排列,能够形成锥形疏水毛细管,这一锥形毛细管能够在雾滴长大过程中将雾滴从微结构内部排出,从而实现防雾。蚊子复眼上小尺度的纳米结构是实现防雾的基础和关键。展开更多
文摘蚊子复眼具有超疏水性和防雾功能,主要归功于蚊子复眼具有特殊的微、纳米分级结构。建立了复眼的微、纳米分级结构模型;并从界面疏水稳定性和热力学的角度进行了分析。界面稳定性分析表明蚊子眼微米和纳米级结构可抵抗的最大压力分别为67.2 k Pa和181 k Pa,能够有效地抵御外部雾滴的润湿。对于纳米尺度的小雾滴,由于受尺度和线张力的影响,类Wenzel状态的自由能高于类Cassie状态,因此在雾化过程中总是形成类Cassie状态,并进而形成Cassie状态。由于微米结构特别的半球形状和紧密排列,能够形成锥形疏水毛细管,这一锥形毛细管能够在雾滴长大过程中将雾滴从微结构内部排出,从而实现防雾。蚊子复眼上小尺度的纳米结构是实现防雾的基础和关键。