期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于机器学习的DNA序列分类研究
1
作者
保志康
陈继璇
+4 位作者
刘印晓
张茂源
章洪博
刘振安
魏晓娟
《生物化工》
CAS
2024年第3期20-27,共8页
DNA承载了生物体内的所有遗传信息,决定基因的结构和功能。对DNA所属类别进行预测,可以判断一个未知类是否为新物种、外来物种或者熟知物种。随着生物技术的发展,如何从获取到的DNA序列中提取完整信息并预测其序列组成,找到组成规律,准...
DNA承载了生物体内的所有遗传信息,决定基因的结构和功能。对DNA所属类别进行预测,可以判断一个未知类是否为新物种、外来物种或者熟知物种。随着生物技术的发展,如何从获取到的DNA序列中提取完整信息并预测其序列组成,找到组成规律,准确反映物种特性成为生物信息学中的一个重要问题。本研究从NCBI网站上下载序列登录号为CP021707和CP085300的两类DNA序列文件,基于碱基频率和数量特征提取方法进行单碱基、双碱基和三碱基的特征提取,构建出84维、168维和35维特征向量,分别基于K近邻(K-Nearest Neighbor,KNN)、支持向量机(Support Vector Machine,SVM)以及K近邻和支持向量机融合(KNN-SVM)算法模型进行分类预测。实验结果表明,在168维特征向量下,基于KNN-SVM算法模型的分类准确率比基于KNN或SVM算法模型的分类准确率高,对判断一个未知类的相关特性具有积极意义。
展开更多
关键词
支持向量机
DNA序列
特征提取
K近邻
分类准确率
下载PDF
职称材料
题名
基于机器学习的DNA序列分类研究
1
作者
保志康
陈继璇
刘印晓
张茂源
章洪博
刘振安
魏晓娟
机构
西北民族大学电气工程学院
出处
《生物化工》
CAS
2024年第3期20-27,共8页
基金
国家自然科学基金项目(12205241)
甘肃省自然科学基金项目(20JR10RA115)
+1 种基金
甘肃省高等学校创新基金项目(2022B-074)
中央高校基本科研业务费专项资金资助(31920220049,31920230138)。
文摘
DNA承载了生物体内的所有遗传信息,决定基因的结构和功能。对DNA所属类别进行预测,可以判断一个未知类是否为新物种、外来物种或者熟知物种。随着生物技术的发展,如何从获取到的DNA序列中提取完整信息并预测其序列组成,找到组成规律,准确反映物种特性成为生物信息学中的一个重要问题。本研究从NCBI网站上下载序列登录号为CP021707和CP085300的两类DNA序列文件,基于碱基频率和数量特征提取方法进行单碱基、双碱基和三碱基的特征提取,构建出84维、168维和35维特征向量,分别基于K近邻(K-Nearest Neighbor,KNN)、支持向量机(Support Vector Machine,SVM)以及K近邻和支持向量机融合(KNN-SVM)算法模型进行分类预测。实验结果表明,在168维特征向量下,基于KNN-SVM算法模型的分类准确率比基于KNN或SVM算法模型的分类准确率高,对判断一个未知类的相关特性具有积极意义。
关键词
支持向量机
DNA序列
特征提取
K近邻
分类准确率
Keywords
support vector machine
DNA sequence
feature extraction
K-nearest neighbor
classification accuracy
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
Q751 [生物学—分子生物学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于机器学习的DNA序列分类研究
保志康
陈继璇
刘印晓
张茂源
章洪博
刘振安
魏晓娟
《生物化工》
CAS
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部