海水声速剖面的准确获取对于利用多波束声呐系统进行水深测量至关重要,而传统的声速剖面获取方式都需要停船进行测量,导致海上调查作业效率较低。为了解决该问题,本文首先介绍了温盐深剖面测量仪(CTD)和抛弃式温盐深剖面测量仪(XCTD)间...海水声速剖面的准确获取对于利用多波束声呐系统进行水深测量至关重要,而传统的声速剖面获取方式都需要停船进行测量,导致海上调查作业效率较低。为了解决该问题,本文首先介绍了温盐深剖面测量仪(CTD)和抛弃式温盐深剖面测量仪(XCTD)间接测量声速剖面的原理,然后对"海洋地质六号"调查船在同一站位及时间利用CTD、XCTD和AML PLUS SV声速剖面仪测量得到的声速剖面进行了一个对比分析。研究结果表明,三者测量得到的声速剖面在相同水深处声速互差引起的水深差值最大为0.130 9 m。在多波束水深测量过程中,可考虑使用CTD和XCTD间接测量获得的声速剖面代替声速剖面仪直接测得的声速剖面,通过合理布设CTD站位以及使用XCTD来提高海上多波束水深调查的作业效率。展开更多
文摘海水声速剖面的准确获取对于利用多波束声呐系统进行水深测量至关重要,而传统的声速剖面获取方式都需要停船进行测量,导致海上调查作业效率较低。为了解决该问题,本文首先介绍了温盐深剖面测量仪(CTD)和抛弃式温盐深剖面测量仪(XCTD)间接测量声速剖面的原理,然后对"海洋地质六号"调查船在同一站位及时间利用CTD、XCTD和AML PLUS SV声速剖面仪测量得到的声速剖面进行了一个对比分析。研究结果表明,三者测量得到的声速剖面在相同水深处声速互差引起的水深差值最大为0.130 9 m。在多波束水深测量过程中,可考虑使用CTD和XCTD间接测量获得的声速剖面代替声速剖面仪直接测得的声速剖面,通过合理布设CTD站位以及使用XCTD来提高海上多波束水深调查的作业效率。