期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
纳米团簇Au_(19)Pd和Au_(19)Pt催化解离N_2O(英文) 被引量:3
1
作者 俞炜铃 左会文 +3 位作者 陆春海 李奕 章永凡 陈文凯 《物理化学学报》 SCIE CAS CSCD 北大核心 2015年第3期425-434,共10页
采用密度泛函理论研究Au-Pd和Au-Pt纳米团簇催化解离N2O.首先根据计算得到Au19Pd和Au19Pt团簇的最优构型(杂原子均位于团簇的表面).以Au19Pd催化解离N2O为例研究催化解离的反应机理.对此主要考虑两个反应机理,分别是Eley-Rideal(ER)和La... 采用密度泛函理论研究Au-Pd和Au-Pt纳米团簇催化解离N2O.首先根据计算得到Au19Pd和Au19Pt团簇的最优构型(杂原子均位于团簇的表面).以Au19Pd催化解离N2O为例研究催化解离的反应机理.对此主要考虑两个反应机理,分别是Eley-Rideal(ER)和Langmuir-Hinshelwood(LH).第一个机理中N2O解离的能垒是1.118 e V,并且放热0.371 e V.N2分子脱附后,表面剩余的氧原子沿着ER路径消除需要克服的能垒是1.920e V,这比反应沿着LH路径的能垒高0.251 e V.此外根据LH机理,氧原子在表面的吸附能是-3.203 e V,而氧原子在表面转移所需的能垒是0.113 e V,这表明氧原子十分容易在团簇表面转移,从而促进氧气分子的生成.因此,LH为最优反应路径.为了比较Au19Pd和Au19Pt对N2O解离的活性,根据最优的反应路径来研究Au19Pt催化解离N2O,得到作为铂族元素的铂和钯对N2O的解离有催化活性,尤其是钯.同时,将团簇与文献中的Au-Pd合金相比较,得到这两种团簇对N2O解离有较高的活性,尤其是Au19Pd团簇.再者,O2的脱附不再是影响反应的主要原因,这可以进一步提高团簇解离N2O的活性. 展开更多
关键词 纳米团簇 催化活性 N2O解离 反应机理
下载PDF
A Density Functional Study for the Reaction Mechanism of CO Oxidation on the Copper Cluster
2
作者 周胜华 俞炜铃 +3 位作者 张静 李奕 章永凡 陈文凯 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2018年第9期1379-1392,共14页
We have studied the reaction mechanism of CO oxidation on the Cu13 cluster via density functional theory. There are two main reaction pathways to be considered: Eley-Rideal(ER) and Langmuir-Hinshelwood(LH) mechan... We have studied the reaction mechanism of CO oxidation on the Cu13 cluster via density functional theory. There are two main reaction pathways to be considered: Eley-Rideal(ER) and Langmuir-Hinshelwood(LH) mechanisms, respectively. According to these two main reaction mechanisms, we have obtained five reaction pathways for the first CO oxidation(denoted as RER1,RER2, RLH1, RLH2 and RLH3, respectively): RER1 is COgas + O2(ads) → O(ads) + CO2(gas); RER2 is COgas + O2(ads) → CO3(ads) → O(ads) + CO2(gas); RLH1 refers to CO(ads) + O2(ads) → O(ads) + CO2(gas); RLH2 refers to CO(ads) + O2(ads) → OOCO(ads) → O(ads) + CO2(gas) and RLH3 refers to O2(ads) + CO(ads)→ O(ads) + O(ads) + CO(ads) → O(ads) + CO2(gas). These pathways have low energy barriers and are strongly exothermic, suggesting the Cu13 cluster is very favorable catalyst for the first CO oxidation. However, there are higher energy barriers of 99. 8 and 45.4 kJ/mol in the process of producing and decomposing intermediates along the RLH2 and RER2, indicating that RER1, RLH1 and RLH3 are superior pathways with lower energy barriers, especially the RER1 channel. Thereafter, the second CO is more prone to react with the remaining oxygen atom on Cu13 along the ER channel in comparison with the LH pathway, in which the moderate barrier is 70.0 kJ/mol and it is exothermic by 59.6 kJ/mol. Furthermore, the interaction between the absorbate and cluster is analyzed by electronic analysis to gain insights into high activity of the copper cluster. 展开更多
关键词 reaction mechanism CO oxidation copper cluster CATALYST electronic analysis
下载PDF
Nanoclusters Au19Pd and Au19Pt Catalyzing CO Oxidation: a Density Functional Study
3
作者 ZHANG Jing YU Wei-Ling +3 位作者 ZHOU Sheng-Hua LI Yi ZHANG Yong-Fan CHEN Wen-Kai 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2018年第12期1849-1859,1843,共12页
The gold atoms on the Au20 cluster had been substituted by the palladium and platinum atoms to obtain the doped clusters with more stable geometries as a function of the bind energy and interaction energy in the previ... The gold atoms on the Au20 cluster had been substituted by the palladium and platinum atoms to obtain the doped clusters with more stable geometries as a function of the bind energy and interaction energy in the previous study. Therefore, we investigated the catalytic activities of the Au_(19)Pd and Au_(19)Pt clusters for CO oxidation along the Langmuir-Hinshelwood mechanism. It is found that the coadsorption of CO and O2 on the doped clusters is obviously stronger than on the Au20 cluster, especially on the doped atom, which makes potential energy of the transition state lower than the total energy of the reactants so that it can promote CO oxidation. The reaction on these doped clusters with the heteroatom on the vertex is more difficult. However, the Au_(19)Pd(S) is more prone to catalyzing the CO oxidation, in which the rate-limiting step has the lower energy barrier of 38.84 kJ/mol for this study. Therefore, the single atom can be modified to change the catalytic activity of the cluster for the CO oxidation. Meanwhile, the different sites on the clusters have different strengths of activity for the reaction. 展开更多
关键词 bimetallic cluster catalytic activity CO oxidation density functional theory
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部