期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于机器学习的新闻论证结构研究——以Bert模型与主流媒体新闻评论为例 被引量:1
1
作者 陈阳 周子杰 +1 位作者 俞蔚捷 许洪腾 《当代传播》 CSSCI 北大核心 2023年第1期74-79,共6页
新闻报道是叙述新闻事实的文本,评论是对新闻事实进行论证的文本。新闻评论相较于新闻报道更直接表达立场、价值与意识形态,为新闻学研究提供了丰富的文本资源,对新闻论证的研究也存在较广阔的理论创新空间。本文以图尔敏模型为基础,形... 新闻报道是叙述新闻事实的文本,评论是对新闻事实进行论证的文本。新闻评论相较于新闻报道更直接表达立场、价值与意识形态,为新闻学研究提供了丰富的文本资源,对新闻论证的研究也存在较广阔的理论创新空间。本文以图尔敏模型为基础,形成一套测量新闻评论的量表,同时使用人工编码的方式处理多篇中央主流新闻媒体的新闻评论文本,形成6109个编码单元。使用机器学习算法(基于Bert模型),以监督学习的方式使机器探索并掌握人工编码的规则。机器学习共有4个独立任务,使用4个学习模型,最终调和准确率(f1 score)分别为95.758%、63.901%、83.794%和84.766%,学习效果整体较优。本文为进一步探索新闻论证提供了工具,以实现对新闻评论更广泛与深入的研究。 展开更多
关键词 新闻评论 新闻论证 图尔敏模型 Bert模型
下载PDF
模仿排序学习模型
2
作者 曾玮 俞蔚捷 +2 位作者 徐君 兰艳艳 程学旗 《中文信息学报》 CSCD 北大核心 2020年第1期97-105,共9页
文档排序一直是信息检索(IR)领域的关键任务之一。受益于马尔科夫决策过程强大的建模能力,以及强化学习方法强大的求解能力,近年来基于强化学习的排序模型被提出并取得了良好效果。然而,由于候选文档中会包含大量的不相关文档,导致基于&... 文档排序一直是信息检索(IR)领域的关键任务之一。受益于马尔科夫决策过程强大的建模能力,以及强化学习方法强大的求解能力,近年来基于强化学习的排序模型被提出并取得了良好效果。然而,由于候选文档中会包含大量的不相关文档,导致基于"试错"的强化学习方法存在效率低下的问题。为解决上述问题,该文提出了一种基于模仿学习的排序学习算法IR-DAGGER,其基于文档标注信息构建专家策略,在保证文档排序精度的同时提高了算法的学习效率。为了测试IR-DAGGER的性能,该文基于面向相关性排序任务的OHSUMED数据集和面向多样化排序的TREC数据集进行了实验,实验结果表明IR-DAGGER在上述两个数据集上均提升了文档排序的精度和效率。 展开更多
关键词 排序 模仿学习 强化学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部