期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于深度学习的舰船辐射噪声多特征融合分类 被引量:7
1
作者 倪俊帅 赵梅 胡长青 《声学技术》 CSCD 北大核心 2020年第3期366-371,共6页
为了改善分类系统的性能,进一步提高舰船辐射噪声分类的正确率,该文提出了一种基于深度神经网络的多特征融合分类方法。该方法首先提取舰船辐射噪声几种不同的特征,将提取的特征同时用于训练具有多个输入分支的深度神经网络,使网络直接... 为了改善分类系统的性能,进一步提高舰船辐射噪声分类的正确率,该文提出了一种基于深度神经网络的多特征融合分类方法。该方法首先提取舰船辐射噪声几种不同的特征,将提取的特征同时用于训练具有多个输入分支的深度神经网络,使网络直接在多种特征参数上进行联合学习,通过神经网络的输入分支和连接层实现特征融合,再对舰船辐射噪声进行分类。为了特征深度学习提取了舰船辐射噪声的频谱特征、梅尔倒谱系数和功率谱特征,并将多特征融合分类方法与在一种特征上进行深度学习分类方法的正确率进行对比。实验结果表明,基于深度学习的多特征融合分类方法可以有效地提高舰船辐射噪声分类的正确率,是一种可行的分类方法。 展开更多
关键词 舰船辐射噪声 特征提取 深度学习 多特征融合 舰船分类
下载PDF
基于VMD和改进CNN的舰船辐射噪声识别方法 被引量:2
2
作者 倪俊帅 胡长青 赵梅 《振动与冲击》 EI CSCD 北大核心 2023年第5期74-82,共9页
针对海上低信噪比舰船目标的识别问题,对传统卷积神经网络进行改进并与变分模态分解相结合,提出了基于VMD和改进CNN的舰船辐射噪声识别方法。应用所提方法对东海试验中12艘辐射噪声信噪比低于5 dB的舰船目标进行了识别,平均正确率为98.... 针对海上低信噪比舰船目标的识别问题,对传统卷积神经网络进行改进并与变分模态分解相结合,提出了基于VMD和改进CNN的舰船辐射噪声识别方法。应用所提方法对东海试验中12艘辐射噪声信噪比低于5 dB的舰船目标进行了识别,平均正确率为98.6%;相比于其他7种识别方法,分别提升了24.8%、17.0%、15.1%、8.0%、13.1%、16.8%、5.2%;改进卷积网络较传统卷积网络在运算量和识别速率方面有明显优势。 展开更多
关键词 舰船辐射噪声 变分模态分解(VMD) 卷积神经网络(CNN) 识别
下载PDF
基于DNN和改进K-means的船舶辐射噪声开集识别方法 被引量:2
3
作者 倪俊帅 赵梅 胡长青 《声学技术》 CSCD 北大核心 2022年第3期382-387,共6页
为提高船舶噪声识别系统的性能,实现开集识别,提出了基于深度神经网络(Deep Neural Network,DNN)和改进K-means的船舶辐射噪声开集识别方法。首先,采用Welch功率谱估计方法提取船舶辐射噪声的特征;然后,设计并应用DNN模型进一步提取特... 为提高船舶噪声识别系统的性能,实现开集识别,提出了基于深度神经网络(Deep Neural Network,DNN)和改进K-means的船舶辐射噪声开集识别方法。首先,采用Welch功率谱估计方法提取船舶辐射噪声的特征;然后,设计并应用DNN模型进一步提取特征向量;最后,使用改进的K-means模型实现开集识别。在实测数据上进行了实验,结果表明,所提方法能实现船舶辐射噪声开集识别,对于实测数据的平均识别正确率为93.5%,较DNN+K-means++方法提高了6.2个百分点。对实测数据添加实验船发动机噪声或渔船噪声进行实验,结果表明,识别方法在其他船只噪声干扰下具有较好的鲁棒性。 展开更多
关键词 船舶辐射噪声 深度神经网络(DNN) 改进K-MEANS 开集识别
下载PDF
基于VMD和窄带包络相关的船舶辐射噪声改进DEMON分析
4
作者 倪俊帅 胡长青 +2 位作者 赵梅 吕国涛 郭政 《声学技术》 CSCD 北大核心 2023年第6期701-708,共8页
船舶辐射噪声的包络谱中蕴含着轴频和桨叶数等船舶固有特征信息,对船舶目标识别具有重要意义。为了提高船舶辐射噪声包络谱解调性能,提出了基于变分模态分解(Variational Mode Decomposition,VMD)和窄带包络相关的改进DEMON分析方法。... 船舶辐射噪声的包络谱中蕴含着轴频和桨叶数等船舶固有特征信息,对船舶目标识别具有重要意义。为了提高船舶辐射噪声包络谱解调性能,提出了基于变分模态分解(Variational Mode Decomposition,VMD)和窄带包络相关的改进DEMON分析方法。首先利用VMD算法代替传统带通滤波器,将船舶辐射噪声信号分解为若干个子带;然后对各子带进行希尔伯特(Hilbert)检波并计算平均窄带包络相关系数,用于衡量信号的包络调制在频域上的非均匀性;最后提取各子带信号包络谱并按照平均窄带包络相关系数进行加权融合,从而得出宽带噪声信号的包络谱。利用该方法对实测不同类型和不同航速船舶辐射噪声信号进行了处理,结果均表明所提方法能有效提高包络谱解调效果,较传统方法更为有效。 展开更多
关键词 船舶辐射噪声 变分模态分解 窄带包络相关 希尔伯特变换 解调
下载PDF
舰船辐射噪声广义多尺度数学形态学特征提取与应用研究 被引量:7
5
作者 郭政 赵梅 +1 位作者 胡长青 倪俊帅 《振动与冲击》 EI CSCD 北大核心 2022年第4期21-28,100,共9页
为稳定提取复杂水声环境下舰船辐射噪声的有效特征,在数学形态学方法的基础上提出一种广义多尺度数学形态腐蚀谱熵(generalized multiscale pattern erosion spectrum entropy, GMPESE)的舰船辐射噪声非线性特征提取方法。通过对千岛湖... 为稳定提取复杂水声环境下舰船辐射噪声的有效特征,在数学形态学方法的基础上提出一种广义多尺度数学形态腐蚀谱熵(generalized multiscale pattern erosion spectrum entropy, GMPESE)的舰船辐射噪声非线性特征提取方法。通过对千岛湖及东海实测舰船辐射噪声处理,验证了不同环境下该特征提取方法的可行性,分析了相关参数选取对特征区分度的影响,并比较了该特征提取方法与多尺度熵(multiscale sample entropy, MSE)特征的识别性能。数据处理结果表明,综合比较运算耗时、提取稳定的特征所需信号时长及复杂环境下目标识别准确率,GMPESE特征提取方法具有更大的优势。 展开更多
关键词 舰船辐射噪声 特征提取 数学形态学 非线性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部