珠江河口峡口岬角地形(或者称"门")是珠江河口典型的高能耗区,研究其消能机制,对于解释珠江河口宏观动力现象,提高对河口动力过程的认识有重要意义。本文设计了峡口岬角局部突变地形的湍流能耗特性物理模型试验,采用Son Tek 16MHz ...珠江河口峡口岬角地形(或者称"门")是珠江河口典型的高能耗区,研究其消能机制,对于解释珠江河口宏观动力现象,提高对河口动力过程的认识有重要意义。本文设计了峡口岬角局部突变地形的湍流能耗特性物理模型试验,采用Son Tek 16MHz ADV采集了高频流速数据,统计了时均流速及湍流特征量。利用"惯性耗散法"计算了峡口岬角突变地形与明渠水流的湍流动能耗率。峡口岬角地形的突变特征产生明显的形态阻力,本文试验工况引起的紊动强度量值是明渠的2倍到10多倍,湍流剪切应力较明渠水流大近2个数量级,湍流动能是明渠水流的40多倍,湍流动能耗散率比明渠水流湍流动能耗散率大2~3个数量级。从湍流局部平衡及能量传递理论看,峡口局部形态阻力导致时均流速的空间梯度、切应力增大及形成大量更小尺度的涡是湍流能耗率增加2~3个量级的重要原因。展开更多
文摘珠江河口峡口岬角地形(或者称"门")是珠江河口典型的高能耗区,研究其消能机制,对于解释珠江河口宏观动力现象,提高对河口动力过程的认识有重要意义。本文设计了峡口岬角局部突变地形的湍流能耗特性物理模型试验,采用Son Tek 16MHz ADV采集了高频流速数据,统计了时均流速及湍流特征量。利用"惯性耗散法"计算了峡口岬角突变地形与明渠水流的湍流动能耗率。峡口岬角地形的突变特征产生明显的形态阻力,本文试验工况引起的紊动强度量值是明渠的2倍到10多倍,湍流剪切应力较明渠水流大近2个数量级,湍流动能是明渠水流的40多倍,湍流动能耗散率比明渠水流湍流动能耗散率大2~3个数量级。从湍流局部平衡及能量传递理论看,峡口局部形态阻力导致时均流速的空间梯度、切应力增大及形成大量更小尺度的涡是湍流能耗率增加2~3个量级的重要原因。