Na_(4)Fe_(3)(PO_(4))_(2)(P_(2)O_(7))(NFPP)is currently drawing increased attention as a sodium-ion batteries(SIBs)cathode due to the cost-effective and NASICON-type structure features.Owing to the sluggish electron an...Na_(4)Fe_(3)(PO_(4))_(2)(P_(2)O_(7))(NFPP)is currently drawing increased attention as a sodium-ion batteries(SIBs)cathode due to the cost-effective and NASICON-type structure features.Owing to the sluggish electron and Na~+conductivities,however,its real implementation is impeded by the grievous capacity decay and inferior rate capability.Herein,multivalent cation substituted microporous Na_(3.9)Fe_(2.9)Al_(0.1)(PO_(4))_(2)(P_(2)O_(7))(NFAPP)with wide operation-temperature is elaborately designed through regulating structure/interface coupled electron/ion transport.Greatly,the derived Na vacancy and charge rearrangement induced by trivalent Al^(3+)substitution lower the ions diffusion barriers,thereby endowing faster electron transport and Na^(+)mobility.More importantly,the existing Al-O-P bonds strengthen the local environment and alleviate the volume vibration during(de)sodiation,enabling highly reversible valence variation and structural evolution.As a result,remarkable cyclability(over 10,000 loops),ultrafast rate capability(200 C),and exceptional all-climate stability(-40-60℃)in half/full cells are demonstrated.Given this,the rational work might provide an actionable strategy to promote the electrochemical property of NFPP,thus unveiling the great application prospect of sodium iron mixed phosphate materials.展开更多
Sodium layered oxides generally suffer from deep-desodiation instability in P2 structure and sluggish kinetics in O3 structure.It will be great to design P2/O3 biphasic materials that bring the complementary merits of...Sodium layered oxides generally suffer from deep-desodiation instability in P2 structure and sluggish kinetics in O3 structure.It will be great to design P2/O3 biphasic materials that bring the complementary merits of both structures.However,such exploration is hindered by the ambiguous mechanism of material formation.Herein,supported by theoretical simulations and various spectroscopies,we prove that P2/O3 biphasic structures essentially originate from the internal heterogeneity of cationic potential,which can be realized by constraining the temperature-driven ion diffusion during solid-state reactions.Consequently,P2/O3 biphasic Na_(0.7)Ni_(0.2)Cu_(0.1)Fe_(0.2)Mn_(0.5)O_(2)-δ with well-designed quaternary composition is successfully obtained,exhibiting much-improved rate capabilities(62 mAh g^(-1)at 2.4 A g^(-1)) and cycling stabilities(84%capacity retention after 500 cycles)than its single-phase analogues.Furthermore,synchrotron-based diffraction and X-ray absorption spectroscopy are employed to unravel the underlying sodium-storage mechanism of the P2/O3 biphasic structure.This work presents new insights toward the rational design of advanced layered cathodes for sodium-ion batteries.展开更多
基金supported by the National Natural Science Foundation of China(52325405,52261135632,and U21A20284)the Science and Technology Foundation of Guizhou Province(QKHZC[2020]2Y037)+1 种基金the Fundamental Research Funds for the Central Universities of Central South University(2023XQLH070,2023XQLH069)the U19 station in the National Synchrotron Radiation Laboratory(NSRL)。
文摘Na_(4)Fe_(3)(PO_(4))_(2)(P_(2)O_(7))(NFPP)is currently drawing increased attention as a sodium-ion batteries(SIBs)cathode due to the cost-effective and NASICON-type structure features.Owing to the sluggish electron and Na~+conductivities,however,its real implementation is impeded by the grievous capacity decay and inferior rate capability.Herein,multivalent cation substituted microporous Na_(3.9)Fe_(2.9)Al_(0.1)(PO_(4))_(2)(P_(2)O_(7))(NFAPP)with wide operation-temperature is elaborately designed through regulating structure/interface coupled electron/ion transport.Greatly,the derived Na vacancy and charge rearrangement induced by trivalent Al^(3+)substitution lower the ions diffusion barriers,thereby endowing faster electron transport and Na^(+)mobility.More importantly,the existing Al-O-P bonds strengthen the local environment and alleviate the volume vibration during(de)sodiation,enabling highly reversible valence variation and structural evolution.As a result,remarkable cyclability(over 10,000 loops),ultrafast rate capability(200 C),and exceptional all-climate stability(-40-60℃)in half/full cells are demonstrated.Given this,the rational work might provide an actionable strategy to promote the electrochemical property of NFPP,thus unveiling the great application prospect of sodium iron mixed phosphate materials.
基金supported by the National Natural Science Foundation of China(U21A20284)Science and Technology Foundation of Guizhou Province(QKHZC20202Y037)+4 种基金the Science and Technology Innovation Program of Hunan Province(2020RC40052019RS1004)Innovation Mover Program of Central South University(2020CX007)National Research Foundation of Korea(NRF-2017R1A2B3004383)the China Scholarship Council(CSC)for the financial support(202006370306)。
文摘Sodium layered oxides generally suffer from deep-desodiation instability in P2 structure and sluggish kinetics in O3 structure.It will be great to design P2/O3 biphasic materials that bring the complementary merits of both structures.However,such exploration is hindered by the ambiguous mechanism of material formation.Herein,supported by theoretical simulations and various spectroscopies,we prove that P2/O3 biphasic structures essentially originate from the internal heterogeneity of cationic potential,which can be realized by constraining the temperature-driven ion diffusion during solid-state reactions.Consequently,P2/O3 biphasic Na_(0.7)Ni_(0.2)Cu_(0.1)Fe_(0.2)Mn_(0.5)O_(2)-δ with well-designed quaternary composition is successfully obtained,exhibiting much-improved rate capabilities(62 mAh g^(-1)at 2.4 A g^(-1)) and cycling stabilities(84%capacity retention after 500 cycles)than its single-phase analogues.Furthermore,synchrotron-based diffraction and X-ray absorption spectroscopy are employed to unravel the underlying sodium-storage mechanism of the P2/O3 biphasic structure.This work presents new insights toward the rational design of advanced layered cathodes for sodium-ion batteries.