任务型对话系统是当前自然语言处理领域的研究热点,对话状态跟踪作为任务型对话系统的核心模块,其主要任务是维护对话的上下文信息并以特定的状态形式展现。目前基于多领域的任务型对话系统由于对话场景复杂,导致对话状态难以跟踪,预测...任务型对话系统是当前自然语言处理领域的研究热点,对话状态跟踪作为任务型对话系统的核心模块,其主要任务是维护对话的上下文信息并以特定的状态形式展现。目前基于多领域的任务型对话系统由于对话场景复杂,导致对话状态难以跟踪,预测精度不高。该文提出一种融合槽位关联和语义关联的状态跟踪模型DST-S^(2)C(Dialogue State Tracking with Slot Connection and Semantic Connection)。该模型将槽位构建成多关系图,并利用层级图注意力网络对槽位关系进行建模,提取融合多种槽位关联信息的槽位向量。同时,在槽门机制中加入词级语义相似度向量作为增强特征,获得对话上下文与槽位的局部语义信息,提高槽门机制的预测精度。实验表明,相较于基线模型,DST-S2C在MultiWOZ 2.1数据集上,联合准确率和槽位准确率分别提升了1.12%和0.39%。展开更多
文摘任务型对话系统是当前自然语言处理领域的研究热点,对话状态跟踪作为任务型对话系统的核心模块,其主要任务是维护对话的上下文信息并以特定的状态形式展现。目前基于多领域的任务型对话系统由于对话场景复杂,导致对话状态难以跟踪,预测精度不高。该文提出一种融合槽位关联和语义关联的状态跟踪模型DST-S^(2)C(Dialogue State Tracking with Slot Connection and Semantic Connection)。该模型将槽位构建成多关系图,并利用层级图注意力网络对槽位关系进行建模,提取融合多种槽位关联信息的槽位向量。同时,在槽门机制中加入词级语义相似度向量作为增强特征,获得对话上下文与槽位的局部语义信息,提高槽门机制的预测精度。实验表明,相较于基线模型,DST-S2C在MultiWOZ 2.1数据集上,联合准确率和槽位准确率分别提升了1.12%和0.39%。