A new insulation system with inorganic A-B-A insulators was proposed to improve the surface flashover performance in vacuum. Inorganic A-B-A insulator samples of Mo/Al2O3 cermet-Al2O3 ceramic-Mo/Al2O3 cermet were prep...A new insulation system with inorganic A-B-A insulators was proposed to improve the surface flashover performance in vacuum. Inorganic A-B-A insulator samples of Mo/Al2O3 cermet-Al2O3 ceramic-Mo/Al2O3 cermet were prepared, in which the conductivity and permittivity of the Mo/Al2O3 cermets were controlled through different amount of metallic molybdenum powder added. The effects of both conductivity and permittivity of Mo/Al2O3 cermets on the DC and impulse surface flashover voltage in vacuum were experimentally investigated. The result showed that the DC and impulse surface flashover voltage were improved by 52% and 95%, respectively. For the distribution of electric field, two triple junctions, i.e., vacuum-layer A-cathode (TJ1) and vacuum-layer A-layer B (TJ2) were prepared with the introduction of layer A into the A-B-A insulation system. Based on the electric field distribution obtained via electrostatic field simulation and Maxwell-Wagner three-layer model, the electric field of T J1 decreases while that of T J2 increases with the increase in conductivity and permittivity of layer A under applied DC and impulse voltage, respectively. Therefore, the improvement of surface flashover performance of A-B-A insulators has been reasonably explained.展开更多
基金supported by National Science Fund for Outstanding Young Scholars of China (No. 50625721)
文摘A new insulation system with inorganic A-B-A insulators was proposed to improve the surface flashover performance in vacuum. Inorganic A-B-A insulator samples of Mo/Al2O3 cermet-Al2O3 ceramic-Mo/Al2O3 cermet were prepared, in which the conductivity and permittivity of the Mo/Al2O3 cermets were controlled through different amount of metallic molybdenum powder added. The effects of both conductivity and permittivity of Mo/Al2O3 cermets on the DC and impulse surface flashover voltage in vacuum were experimentally investigated. The result showed that the DC and impulse surface flashover voltage were improved by 52% and 95%, respectively. For the distribution of electric field, two triple junctions, i.e., vacuum-layer A-cathode (TJ1) and vacuum-layer A-layer B (TJ2) were prepared with the introduction of layer A into the A-B-A insulation system. Based on the electric field distribution obtained via electrostatic field simulation and Maxwell-Wagner three-layer model, the electric field of T J1 decreases while that of T J2 increases with the increase in conductivity and permittivity of layer A under applied DC and impulse voltage, respectively. Therefore, the improvement of surface flashover performance of A-B-A insulators has been reasonably explained.