期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
近红外光谱结合模糊非相关QR分析的生菜储藏时间辨别
1
作者 胡彩平 傅兆民 +2 位作者 许鸿嘉 武斌 孙俊 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第8期2268-2272,共5页
生菜是人们经常食用的蔬菜之一,生菜的储藏时间是影响生菜新鲜程度的重要因素。所以研究一种简单、快速、非破坏性的生菜储藏时间的鉴别方法是非常必要的。近红外光谱(NIR)分析能快速和准确的获取生菜的近红外光谱,从而实现无损鉴别生... 生菜是人们经常食用的蔬菜之一,生菜的储藏时间是影响生菜新鲜程度的重要因素。所以研究一种简单、快速、非破坏性的生菜储藏时间的鉴别方法是非常必要的。近红外光谱(NIR)分析能快速和准确的获取生菜的近红外光谱,从而实现无损鉴别生菜储藏时间。但是生菜的NIR数据中存在噪声信号和冗余信号,为了消除光谱的噪声信号并提取特征信息,提出了一种基于模糊非相关QR分析(FUQRA)的近红外光谱生菜储藏时间鉴别新方法。首先,需要降低原始NIR数据的维数,通过使用主成分分析(PCA)将包含1557个维度的光谱数据降至包含22个维度。然后通过模糊非相关判别转换(FUDT)计算出特征向量,利用特征向量建立鉴别向量矩阵,并进行QR分解,得到最终的鉴别向量矩阵。最后以60个新鲜生菜样本为研究样本,使用K近邻(KNN)方法进行分类,用AntarisⅡ型NIR光谱仪对生菜样品进行近红外光谱检测和数据收集。实验过程中每隔12小时对每个样本进行3次重复检测,将这些数据取平均值作为实验数据。随后利用多元散射校正(MSC)减少近红外光谱中的噪声信号。为了验证所提出方法的有效性,分别将主成分分析(PCA)结合KNN、主成分分析和模糊线性判别分析(FLDA)结合KNN、主成分分析和模糊非相关判别转换(FUDT)结合KNN以及主成分分析和模糊非相关QR分析(FUQRA)结合KNN四种算法分析结果进行比较。将权重指数m的不同取值产生的分类准确率进行比较,选出最合适的权重指数和KNN的参数K:m=2,K=3。最终得到的分类准确率分别为43.33%、96.67%、96.67%和98.33%。可以看出,相比其他三个算法,模糊非相关QR分析可以更好地实现对生菜储藏时间的鉴别。 展开更多
关键词 近红外光谱 模糊线性判别分析 模糊非相关判别转换 模糊非相关QR分析 生菜
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部