期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于BERT和层次化Attention的微博情感分析研究 被引量:20
1
作者 赵宏 傅兆阳 赵凡 《计算机工程与应用》 CSCD 北大核心 2022年第5期156-162,共7页
微博情感分析旨在挖掘网民对特定事件的观点和看法,是网络舆情监测的重要内容。目前的微博情感分析模型一般使用Word2Vector或GloVe等静态词向量方法,不能很好地解决一词多义问题;另外,使用的单一词语层Attention机制未能充分考虑文本... 微博情感分析旨在挖掘网民对特定事件的观点和看法,是网络舆情监测的重要内容。目前的微博情感分析模型一般使用Word2Vector或GloVe等静态词向量方法,不能很好地解决一词多义问题;另外,使用的单一词语层Attention机制未能充分考虑文本层次结构的重要性,对句间关系捕获不足。针对这些问题,提出一种基于BERT和层次化Attention的模型BERT-HAN(bidirectional encoder representations from transformers-hierarchical Attention networks)。通过BERT生成蕴含上下文语意的动态字向量;通过两层BiGRU分别得到句子表示和篇章表示,在句子表示层引入局部Attention机制捕获每句话中重要的字,在篇章表示层引入全局Attention机制以区分不同句子的重要性;通过Softmax对情感进行分类。实验结果表明,提出的BERT-HAN模型能有效提升微博情感分析的Macro F1和Micro F1值,具有较大的实用价值。 展开更多
关键词 深度学习 情感分析 特征提取 词向量 注意力机制
下载PDF
基于特征融合的中文文本情感分析方法 被引量:8
2
作者 赵宏 傅兆阳 王乐 《兰州理工大学学报》 CAS 北大核心 2022年第3期94-102,共9页
针对现有的中文文本情感分析方法不能从句法结构、上下文信息和局部语义特征等方面综合考量文本语义信息的问题,提出一种基于特征融合的中文文本情感分析方法.首先,采用Jieba分词工具对评论文本进行分词和词性标注,并采用词向量训练工具... 针对现有的中文文本情感分析方法不能从句法结构、上下文信息和局部语义特征等方面综合考量文本语义信息的问题,提出一种基于特征融合的中文文本情感分析方法.首先,采用Jieba分词工具对评论文本进行分词和词性标注,并采用词向量训练工具GloVe获取融入词性的预训练词向量;然后,将词向量分别作为引入Self-Attention的BiGRU和TextCNN的输入,使用引入Self-Attention的BiGRU从文本的句法结构和文本的上下文信息两个方面综合提取全局特征,使用TextCNN提取文本的局部语义特征;最后,将全局特征和局部语义特征进行融合,并使用Softmax进行文本情感分类.实验结果表明,本文方法可以有效提高文本情感分析的准确率. 展开更多
关键词 中文文本情感分析 特征融合 特征提取 语义特征 自注意力机制 深度学习混合模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部